A Protocol to Detect Local Affinities Involved in Proteins Distant Interactions

Christophe N. Magnan, Cécile Capponi, François Denis

Silicon Valley, USA November 2 - 4, 2007

イロン イヨン イヨン イヨン

Proteins distant interactions Disulfide bridges example Local information

Proteins distant interactions - examples

lonic links, hydrogen bonds, hydrophilic interactions, salt bridges, disulfide bridges, Van Der Waals forces, ...

3D structure constrained/stabilized by these interactions

Proteins distant interactions Disulfide bridges example Local information

Prediction of disulfide bridges: a two-stage process

1AS5 $H \times X C_4 C_5 L \times G \times C_{10} R \times X G C_{16} S \times A \times C_{20} C_{22} Q R$

<ロ> <同> <同> <同> < 同>

- < ≣ →

Proteins distant interactions Disulfide bridges example Local information

イロト イヨト イヨト イヨト

Prediction of disulfide bridges: a two-stage process

Proteins distant interactions Disulfide bridges example Local information

・ロン ・回と ・ヨン ・ヨン

æ

Prediction of disulfide bridges: a two-stage process

Proteins distant interactions Disulfide bridges example Local information

▲□→ < □→</p>

- < ≣ →

Local environments of bonded amino-acids

Proteins distant interactions Disulfide bridges example Local information

▲ □ ► ▲ □ ►

∃ >

Local environments of bonded amino-acids

Is there information carried by local environments involved in the formation of bonds such as disulfide bridges?

Proteins distant interactions Disulfide bridges example Local information

Local information?

Are the local environments involved in interactions?

- β -sheets: there is local information
- Disulfide/salt bridges: no biological evidence
- Some biologists and biochemists skeptical

Proteins distant interactions Disulfide bridges example Local information

(4 同) (4 回) (4 回)

Local information?

Are the local environments involved in interactions?

- β -sheets: there is local information
- Disulfide/salt bridges: no biological evidence
- Some biologists and biochemists skeptical
- Always used to predict disulfide bridges

Proteins distant interactions Disulfide bridges example Local information

イロト イポト イヨト イヨト

Local information?

Are the local environments involved in interactions?

- β -sheets: there is local information
- Disulfide/salt bridges: no biological evidence
- Some biologists and biochemists skeptical
- Always used to predict disulfide bridges
- Is it possible to detect such information?
- Is it possible to show that there exists an **affinity** between local environments of bonded residues involved in the pairing of these residues?

Modelling the data A first approach A reasonable approach

イロト イヨト イヨト イヨト

Model

- Σ : the set of 20 amino-acids,
- $\mathcal{P} \subset \Sigma^*$: proteins containing an even number of amino-acids involved in bridges
- $\mathcal{P}_I \subset \mathcal{P}$, proteins with 2*I* amino-acids involved in bridges
- $\phi,$ a function which associates the correct connectivity to a protein in $\mathcal P$

Modelling the data A first approach A reasonable approach

Model

The prediction of interactions between amino-acids amounts to approximating ϕ with the highest precision

・ロン ・回と ・ヨン・

3

Modelling the data A first approach A reasonable approach

Model

Local environments: segments centered on bonded amino-acids of size 2r + 1 are considered.

- P a distribution over \mathcal{P}
- $\Omega_r = \Sigma^{2r+1}$ the set of proteins segments of size 2r+1
- For $w, w' \in \Omega_r$ let:
 - P(w) the probability that w is a local environment
 - P(B(w, w')|w, w', l) the probability that w and w' are bonded knowing that there are distinct local environments of amino-acids involved in interactions into a protein p ∈ P_l

Modelling the data A first approach A reasonable approach

Local information?

Let p be a protein with l bridges (2l involved amino-acids).

 $P(B(w, w')|w, w', l) = \frac{1}{2l-1} \Leftrightarrow$ No local information for pairing amino acids

- a probabilistic way to determine if the local context of bonded residues is involved into the formation of the bridges
- but, estimating directly these probabilities is impossible:

 $r = 3 \rightarrow |\{(w, w'), w, w' \in \Omega_r\}| = 20^{12} \simeq 4 \cdot 10^{15}$, while only few hundreds examples are available in databases!

<ロ> (四) (四) (注) (注) (注) (三)

Modelling the data A first approach A reasonable approach

・ロン ・回と ・ヨン・

æ

An affinity function g

The solution we propose:

To suppose the existence of an affinity function $g: \Omega_r^2 \to Y$ (|Y| small) such that:

$$g(w_1, w_2) = g(w_1', w_2') \Rightarrow P(B(w_1, w_2)|w_1, w_2, l) \simeq P(B(w_1', w_2')|w_1', w_2', l)$$

and

$$y < y' \Rightarrow P(B(w_1, w_2)|g(w_1, w_2) = y) < P(B(w'_1, w'_2)|g(w'_1, w'_2) = y')$$

Modelling the data A first approach A reasonable approach

A simple case: $Y = \{0, 1\}$

With $Y = \{0, 1\}$, pairs of local environments are partitioned into two classes, corresponding to two affinity levels and:

Modelling the data A first approach A reasonable approach

イロト イヨト イヨト イヨト

Observations as indirect information on g

The observed classes (bonded or non-bonded) of examples issued from experiments do not carry direct information about g.

Modelling the data A first approach A reasonable approach

Observed pairs as noisy examples of g

The pairs such that

- $g{=}1$ correspond to observing a bridge with noise $\eta^+{=}1{-}\alpha_1'$
- g=0 correspond to non-bonded pairs with noise $\eta^-=\alpha_0^{\prime}$

- generalization of the uniform classification noise $(\eta^+ = \eta^-)$
- referred to as class-conditional classification noise (CCCN)

Modelling the data A first approach A reasonable approach

- ∢ ⊒ →

Setting up the protocol to learn g

If a local information exists

If it can be represented by a function learnable under CCCN

then we should be able to detect, extract and evaluate it

assuming that we have access to a sufficient number of examples

CCCN-algorithms Experimentation protocol Results

→ ∃ →

What can we learn under CCCN?

- some theoretical results
- they can not be used in practice
- methods such as Soft-margins SVM cannot handle data corrupted by CCCN
- New methods have to be created

CCCN-algorithms Experimentation protocol Results

< **₩** ► < **⇒** ►

∃ >

Perceptron CCCN

- we propose an algorithm to learn *linear threshold functions* from examples corrupted by CCCN
- a generalization of the Perceptron algorithm

CCCN-algorithms Experimentation protocol Results

イロト イヨト イヨト イヨト

Datasets

- 1 dataset of proteins featuring salt bridges: G3D
 - 1836 internal salt bridges in 570 proteins
 - created from PDB by Christophe Geourjon (IBCP, Lyon, France) in 2005
- 1 dataset of proteins featuring disulfide bridges: SPX
 - 1676 internal disulfide bridges within 567 proteins
 - created from Swiss-Prot by Jianlin Cheng and Pierre Baldi (Irvine, California) in 2005
- proteins containing from 2 to 5 bonds

CCCN-algorithms Experimentation protocol Results

Coding of local environments pairs

For a protein containing *I* bridges:

- I(2I-1) pairs of local environments
- radius r = 6 (|w| = 13)
- each local environments pair (w, w') is described as follows:
 - 169 amino-acids pairs (a_i, a_j) , with $a_i \in w$ and $a_j \in w'$ $(i, j \in \{1, ..., 13\})$
 - (w, w') is modeled with a vector of \mathbb{R}^m with:
 - *m* is the number of ordered pairs of amino-acids in Σ (*m* = 231)
 - each coordinate is the number of time the corresponding pair is observed in (w, w')

・ロン ・回 と ・ 回 と ・ 回 と

CCCN-algorithms Experimentation protocol Results

イロン イヨン イヨン イヨン

Experiments and studied criteria

- we launch 5 10-fold cross-validations for both kinds of bonds
- two criteria are studied:
 - P(B|g = 1), the probability to observe a bond knowing that the pair is predicted to have a high level of affinity
 - P(B|g = 0), the probability to observe a bond knowing that the pair is predicted to have a low level of affinity

Salt bridges

A clear signal is detected: $\forall l \in \{2, 3, 4, 5\}, P(B|g = 1, l) > P(B|g = 0, l)$

<ロ> (日) (日) (日) (日) (日)

æ

CCCN-algorithms Experimentation protocol Results

イロト イヨト イヨト イヨト

Salt bridges

The detected affinities might be explained either by

- the ionic nature of salt bridges
- the hydrophilic property of many residues around salt bridges

Introduction Revealing local affinities Experimentation protocol Conclusions Results

Disulfide bridges

Results are not as clear as expected: $\forall l \in \{2, 3, 4, 5\}, P(B|g = 1, l) \simeq P(B|g = 0, l)$

イロン イヨン イヨン イヨン

CCCN-algorithms Experimentation protocol Results

イロト イヨト イヨト イヨト

Disulfide bridges

These results may be explained by several independent reasons:

- Biology reality: there might be no local information that would guide the formation of disulfide bridges
- Learning a function in an unsuitable function class: the function g that we try to learn might be not representable by a linear threshold function.

• ...

This work give us no hint on which assumption is the most probable

Conclusions

• a machine-learning based protocol to answer the question of the presence of local affinities

- 4 回 2 - 4 □ 2 - 4 □

- independent from the contact
- results on salt bridges validate this protocol
- disulfide bridges remain an open question