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ABSTRACT

Motivation: Discovery of novel protective antigens is fundamental to
the development of vaccines for existing and emerging pathogens.
Most computational methods for predicting protein antigenicity
rely directly on homology with previously characterized protective
antigens; however, homology-based methods will fail to discover
truly novel protective antigens. Thus, there is a significant need for
homology-free methods capable of screening entire proteomes for
the antigens most likely to generate a protective humoral immune
response.
Results: Here we begin by curating two types of positive data:
(i) antigens that elicit a strong antibody response in protected
individuals but not in unprotected individuals, using human
immunoglobulin reactivity data obtained from protein microarray
analyses; and (ii) known protective antigens from the literature. The
resulting datasets are used to train a sequence-based prediction
model, ANTIGENpro, to predict the likelihood that a protein is a
protective antigen. ANTIGENpro correctly classifies 82% of the
known protective antigens when trained using only the protein
microarray datasets. The accuracy on the combined dataset
is estimated at 76% by cross-validation experiments. Finally,
ANTIGENpro performs well when evaluated on an external pathogen
proteome for which protein microarray data were obtained after the
initial development of ANTIGENpro.
Availability: ANTIGENpro is integrated in the SCRATCH suite of
predictors available at http://scratch.proteomics.ics.uci.edu.
Contact: pfbaldi@ics.uci.edu
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1 INTRODUCTION
Identification of antigen proteins capable of triggering a significant
humoral immune system response is important for addressing
fundamental questions in immunology, virology and bacteriology.
It is also important for practical purposes ranging from diagnostic
applications to vaccine design. The goal of this article is to develop
and test a predictor of protein antigenicity that can be used on a
high-throughput scale on existing or new proteomes to identify key
antigenic proteins that may have protective qualities and may be
used in vaccine design applications. The predictor is developed
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by applying machine-learning methods to training data resulting
from a unique high-throughput proteomic chip technology originally
developed in the Felgner Laboratory (Davies et al., 2005), as well
as data extracted from the literature and public databases.

From the outset, it must be recognized that the notion of protein
antigen is similar to many other notions in biology (e.g. gene,
consciousness) that are very useful but not tightly defined. Given
the complexity, variability and flexibility of the immune system, at
one extreme, one could take the position that every protein has the
potential of being antigenic and of triggering a humoral immune
response. On the other hand, it is well known that immune systems
respond differentially to the various proteins of a pathogen and
that there are commonalities among the humoral immune responses
of different individuals exposed to the same pathogen. Within the
proteins of a pathogen considered to be antigenic, one can further
distinguish several overlapping subclasses with fuzzy boundaries
such as protective antigens, serodiagnostic antigens and cross-
reactive antigens. To a first degree of approximation: protective
antigens are important for conferring protection, serodiagnostic
antigens are associated with a differential humoral antibody response
between naive and exposed individuals and are important for
diagnostics purposes and cross-reactive antigens are associated with
a strong humoral antibody response in both naive and exposed
individuals. The primary focus of this work is on protective antigen
prediction.

Protecting populations against infectious pathogens is an
important priority and vaccination is widely recognized as one of
the most reliable preventive approaches. By simulating the presence
of a given pathogen, a vaccine elicits a specific protective immune
response. Although most proteins produced by a given pathogen can
be considered to be antigens, only some, denoted protective antigens,
induce an effective immune response against the whole pathogen
(Rappuoli, 2001). These protective antigens are usually surface-
exposed or exported proteins accessible to the immune system
(Rodriguez-Ortega et al., 2006). For safety purposes, the historical
trend has been toward creating subunit vaccines or epitope vaccines
(Schmidt, 1989) containing only full or partial protective antigens,
as opposed to early vaccines based on attenuated whole pathogens.
Identification of protective antigenic proteins or determinants is
therefore a top priority in current vaccine development projects
(Doytchinova and Flower, 2007a).

Thanks to advances in genomic technologies, pathogen genomes
can now be rapidly obtained (Rappuoli and Covacci, 2003), opening
the door for in silico screening of a pathogen’s entire proteome
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for the antigens most likely to elicit a protective immune response.
Prediction of subunit antigenic determinants, B-cell epitopes, by
computational methods has been an active area of research for a
long time (Hopp and Woods, 1981; Kolaskar and Tongaonkar, 1990;
Thornton et al., 1986; Welling et al., 1985) and is still an accepted
approach for modern vaccinology (Andersen et al., 2006; Larsen
et al., 2006; Odorico and Pellequer, 2003; Rubinstein et al., 2009;
Saha and Raghava, 2006; Söllner and Mayer, 2006; Sweredoski and
Baldi, 2008, 2009). However, because of the non-linear nature of
epitopes in active folded proteins and the immune system’s ability
for adaptive response to antigens, the relevance of such predictors
remains unclear and is debated often (Blythe and Flower, 2005;
Greenbaum et al., 2007; Ponomarenko and Bourne, 2007).

Prediction of protective antigens is usually referred to as reverse
vaccinology (Rappuoli, 2001; Rappuoli and Covacci, 2003). This
approach has obtained several notable successes (Rappuoli and
Covacci, 2003) since the seminal work of Pizza et al. (2000).
In previous work, the best vaccine candidates have been selected
using both similarity to known protective antigens and predicted
characteristics, such as the protein localization. For instance, Pizza
et al. (2000) used BLAST (Altschul et al., 1990), GCG (Accelrys
Software Inc, 2005), FASTA (Pearson, 1990) and PSORT (Nakai
and Horton, 1999) to predict features typical of surface-associated
proteins. These methods rely on sequence similarity with known
protective antigens to predict relevant vaccine candidates in the
proteome of a new pathogen. While homology to known protective
antigens is a reasonable criteria for identifying some new protective
antigens, it is by no means exhaustive and, by definition, will miss
novel non-homologous protective antigens.

Doytchinova and Flower (2007a, b) have proposed a sequence-
based method that does not rely on homology as the methods
described above do. Three distinct datasets were prepared to
predict protective bacterial antigens, protective viral antigens
and tumor antigens, respectively. Each dataset consists of 100
antigens collected from the literature as positive examples and
100 proteins randomly selected from the same set of species
as negative examples. The corresponding predictive models were
derived by applying a two-class discriminant analysis using partial
least squares applied to a uniform representation of the protein
sequences, obtained by the auto cross-covariance method described
in Wold et al. (1993). The estimated prediction accuracy of the
resulting predictor, Vaxijen, ranges from 70% to 89% depending
on the evaluation method and training set. The same method
has been applied to 33 protective fungal antigens and 117
protective parasite antigens in Doytchinova and Flower (2008), the
corresponding models are also included in Vaxijen. To the best of
our knowledge, the Vaxijen predictor is the first and only alignment-
free bioinformatics tool available for protective antigen prediction.
Considering the small size of the datasets used for training and
evaluation and the protocol for selecting negative examples, it is
reasonable to suspect that the published accuracy estimates for
Vaxijen are somewhat biased and that improvements ought to be
possible with larger annotated datasets. However, collecting data
on protective and non-protective antigens remains a particularly
difficult task in spite of the numerous B-cell epitope databases
available like AntiJen (Toseland et al., 2005), IEDB (Peters et al.,
2005), Bcipep (Saha et al., 2005) or AntigenDB (Ansari et al., 2010),
since information about the neutralization of the parent protein or
pathogen is rarely available. Reviewing the vaccinology literature

to find relevant proteins to build a large training set is laborious
and yields relatively small datasets. Thus, new high-throughput
approaches must be developed to obtain larger data sets.

Here, we take advantage of a new high-throughput technology
(Barbour et al., 2008; Davies et al., 2005; Sundaresh et al.,
2006) to study the humoral immune response to pathogen infection
using protein microarrays. The technology uses a proprietary in
vitro expression system to express the proteins encoded in the
genome of a pathogen and print them on nitrocellulose arrays
where they can be probed with sera from different individuals
(e.g. naive versus exposed versus vaccinated). Secondary antibody
coupled with fluorescent methods are used to visualize the entire
response profile as with DNA microarrays. The proteomes of
several pathogens such as Francisella tularensis (Eyles et al., 2007),
Burkholderia pseudomallei (Felgner et al., 2009) and Plasmodium
falciparum (Crompton et al., 2008, 2010) have been partially or
entirely printed and probed against the sera of individuals with either
positive or negative clinical tests for the corresponding pathogen.
The resulting reactivity data provide a reliable estimate of the
humoral immune response to each pathogen protein for each sera
sample. Thus, these protein microarray data can be used to curate
relevant datasets to train sequence-based machine-learning methods
for predicting the degree of humoral immune response to novel
proteins. Although the protein microarray data does not directly
provide information about whether or not a particular antigen is
protective, our working hypothesis is that the actual protective
antigens are significantly overrepresented among the set of antigens
for which the protected individuals elicit a significant antibody
response, and the unprotected individuals do not.

Here we begin by curating a large and non-redundant set of
antigens with known immunogenicity using this high-throughput
technology and combine it with data extracted from the literature and
the existing databases. Only pathogen proteins are analyzed in this
work, thus, self-antigens from tumors and non-peptide antigens are
not utilized. From this protein set, we extract several sequence-based
features and develop a two-stage machine-learning architecture to
predict protective antigenicity from the protein primary sequence.
The predictive abilities of the resulting system are assessed in four
different ways: (i) by direct comparison with the method proposed
in Doytchinova and Flower (2007b); (ii) by standard 10-fold cross-
validation; (iii) by repeated cross-validations using each pathogen
protein subset as a fold; and (iv) by external validation on a pathogen
proteome for which protein microarray data were obtained after the
initial development of ANTIGENpro.

2 DATASETS AND METHODS
In this section, we describe the methodological steps of our study:
(i) preparation of a rigorous set of antigenic and non-antigenic proteins;
(ii) extraction of several sequence-based feature sets for each protein;
and (iii) derivation of ANTIGENpro to predict protein antigenicity. For
convenience, protein sets appear in bold and feature sets appear in square
brackets.

2.1 Protein datasets for protective antigen prediction
We curate seven independent sets of proteins for the purpose of studying
the prediction of protein antigenicity from primary sequence. Five of the
datasets are curated using protein microarray data analysis for each of the
following pathogens: Candida albicans, Plasmodium falciparum, Brucella
melitensis, Burkholderia pseudomallei and Mycobacterium tuberculosis.
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Table 1. Description of the five protein microarray experiments used in this
study for the preparation of the microarray datasets (Section 2.1.1)

Pathogen (Strain) Microarray Exposed Naive
proteins samples samples

Candida albicans (SC5314) 109 31 62
Burkholderia pseudomallei (K96243) 132 88 99
Plasmodium falciparum (3D7) 2279 12 29
Brucella melitensis (16M) 1404 42 44
Mycobacterium tuberculosis (H37Rv) 3883 13 69

Details and protocols followed to prepare these sets are given in Section 2.1.1.
In addition, a dataset containing known protective antigens found in the
literature and public databases, PAntigens, was curated and the details are
given in Section 2.1.2. After the development of ANTIGENpro, an additional
protein microarray dataset were obtained for the pathogen Bartonella
henselae, and this dataset is used for external validation of the method. The
details of this external dataset are provided in Section 2.1.3.

2.1.1 Protein microarray data analysis Technology developed in the
Felgner Laboratory, described in detail in Davies et al. (2005), was used
to obtain reactivity data for most of the proteins of the five pathogens
listed in Table 1. In short, for a given pathogen, the process begins
by PCR amplification of primers for all deduced open reading frames
(ORFs) in the sequenced genome. The amplified DNA is cloned with
an in vivo recombination method into a plasmid expression vector. Then
the vector is run through an in vitro transcription/translation process to
produce polypeptides. These peptides are then printed on a enzyme-linked
immunosorbent assay (ELISA) (Engvall and Perlmann, 1971) array for
screens against patient sera. ELISA uses fluorescence of a tagged dye probe
to indirectly measure binding between antibodies in sera and the proteins
printed on the array. A single microarray experiment consists of probing an
array with patient sera, known as the primary, then probing with a secondary
that binds with antibodies present in the primary, and finally a tagged dye
conjugated with a molecule known to bind to the secondary is applied as
a tertiary probe. The arrays are then scanned via laser, and fluorescence
intensities are measured. The printing, probing and scanning aspects of these
experiments are similar to the processes used with cDNA microarrays.

Normalization and differential analysis protocols developed for DNA
microarrays have been extended to these new protein arrays (Sundaresh
et al., 2006, 2007). Each dataset is prepared for analysis in the following
manner: the VSN transform (Huber et al., 2002) is applied to the dataset
agnostic of class, typically using a plasmid expression vector with no inserted
cloned DNA as a control. Differential analysis is done using the Cyber-
T software described in Baldi and Long (2001) and available online at
http://cybert.ics.uci.edu. Cyber-T calculates a Bayesian regularized estimate
of the variance of the signal intensity levels. Then theses variance estimates
are used to compare the groups with a t-test. The Benjamini–Hochberg
multiple test correction is used to scale the P-values, which are used as
a measure of differential reactivity between naive and exposed groups.

For each pathogen used in this study the pathogen name, specific
strain, number of proteins with microarray data, number of exposed
sera samples, and number of naive sera samples are displayed in
Table 1. The ORFs and primers used for each dataset are available at
http://portal.proteomics.ics.uci.edu/virus/portal.php. Each pathogen has at
least 40 associated sera samples. The sera samples are divided into naive
and exposed groups as described below.

• The C.albicans dataset (Candida) exposed group sera comes from
patients being treated for candidiasis (recovery of Candida from blood
cultures) at Shands Teaching Hospital at the University of Florida
(STH-UF). For the candidiasis patients, most sera were collected within
7 days from the first date that blood cultures were positive. The naive

control group sera comes from hospitalized patients with negative tests
at the Infectious Diseases Consultation Service of STH-UF and from
volunteers at the University of California, Irvine (Mochon et al., 2010).

• The P.falciparum dataset (Malaria) consists of patients from a 2006
longitudinal study conducted in malaria endemic rural Mali. Sera
samples were taken in May, shortly before the beginning of malaria
season. To avoid age-related factors, only subjects aged 8–10 years
were analyzed. The subjects were monitored throughout the following
malaria season. At the end of the season if a patient had at least one
malaria episode, their May sera sample was categorized as naive, and
if they had no episodes their May sera was categorized as exposed. The
dataset is described in detail in Crompton et al. (2008).

• The B.melitensis dataset (Brucella) exposed group sera comes from
patients in Lima, Peru confirmed to have acute brucellosis by both Rose
Bengal screening test and positive blood culture. All exposed patients
had their first known episode of brucellosis, and sera was drawn within
1–3 weeks of onset of symptoms. The naive group sera come from
ambulatory healthy control individuals from Lima, Peru. The dataset
is described in detail in Liang et al. (2010).

• The B.pseudomallei dataset (Burkholderia) exposed group sera
comes from culture positive samples from patients in Thailand and the
naive sample sera comes from patients in Singapore. The dataset is
described in detail in Felgner et al. (2009).

• The M.tuberculosis dataset (Tuberculosis) consists of sera samples
collected from Colombia where the exposed group tests positive
using both sputum smear and bacterial culture tests for M.tuberculosis
and the naive control group is negative for both tests. Additionally,
all sera are HIV negative in order to minimize the confounding
relationship between HIV positive sera and the antibody response to
the M.tuberculosis antigens.

As discussed in the introduction, the notions of ‘antigen’ and ‘protective
antigen’ are fuzzy. Here we describe the general approach and specific
steps taken to curate sets of positive and negative examples, based on
protein microarray analysis, that are relevant for the task of predicting
the likelihood that a particular protein is a protective antigen. Since no
direct information about protection is available, we identify the sets of
antigens which elicit: (i) the strongest response among protected individuals;
and (ii) the most significant differential response between protected and
unprotected individuals. The working hypothesis is that these antigens are
significantly more likely to contribute to a protective immune response than
the other proteins in the proteome. This key assumption will be tested using a
set of known protective antigens from the literature, PAntigens, described
in Section 2.1.2.

Specifically, the following protocol is applied to each pathogen dataset
to classify proteins as antigenic or non-antigenic. First, the proteins are
ranked according to the mean antibody reactivity calculated from the exposed
sera group. The most reactive 10% are reordered by the P-value calculated
by the t-test between the exposed and naive sera groups and the 50%
most differentially reactive of this subset (5% of total), with the lowest
P-values, are labeled as antigenic. The non-antigenic proteins are selected
in the opposite fashion. Starting from the complete list of proteins ranked by
the mean reactivity, the least reactive 20% are reordered by the P-value and
the 50% least differentially reactive of this subset (10% of total), with the
highest P-values, are labeled as non-antigenic.

Finally, the antigen and non-antigen sets from the five pathogens are
merged and redundancy reduced using BLASTCLUST (Altschul et al., 1997)
with a 30% similarity threshold, as for PAntigens (Section 2.1.2). In
addition, proteins in the merged pathogen set with more than 30% similarity
with any protein in PAntigens are also removed. The size and composition
of the six final datasets are reported in Table 2.

2.1.2 Known protective antigens: PAntigens As discussed in the
introduction, collecting relevant data for predicting protective antigens is
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Table 2. Size and composition of the six protein sets used to train
ANTIGENpro

Protein set Size Antigenic Non-antigenic

PAntigens 213 213 0
Brucella 206 70 136
Burkholderia 17 5 12
Candida 13 3 10
Malaria 333 114 219
Tuberculosis 542 171 371
Total 1324 576 748

difficult. To the best of our knowledge, there are no public databases
dedicated specifically to this purpose. B-cell epitope databases such as IEDB
(Peters et al., 2005), AntiJen (Toseland et al., 2005), Bcipep (Saha et al.,
2005) or AntigenDB (Ansari et al., 2010) represent a poor source of data for
this type of study. Most of the reported B-cell epitopes are either part of the
same set of extensively studied and epitope-mapped antigens or are peptides
for which the neutralization of the parent protein, let alone the pathogen,
is unknown and cannot be assumed from the neutralization of the epitope
(Greenbaum et al., 2007). The immunology literature remains the principal
source of relevant data for this prediction problem.

Doytchinova and Flower (2007b) collected 100 bacterial and 100 viral
protective antigens by reviewing the literature. We merged these two
protein sets together with antigens reported in Kolaskar and Tongaonkar
(1990), in Rodriguez-Ortega et al. (2006) and 12 immunogenic antigens
found in the Bcipep database resulting in a set of 246 known protective
antigens. Sequence redundancy was then reduced with a 30% similarity
cutoff using BLASTCLUST (Altschul et al., 1997). The final PAntigens
set contains 213 non-redundant protective antigens. UniProt (The UniProt
Consortium, 2007) identifiers of the 213 protective antigens are reported in
Supplementary Table 1. Note that there are several important differences
between PAntigens and the Vaxijen (Doytchinova and Flower, 2007b)
datasets. First, only pathogen proteins are considered in this study, therefore
tumor antigens are not included. In addition, different groups of pathogens
(e.g. bacteria, viruses or yeasts) are not separated to train distinct prediction
models. Finally, the proteins classified as non-antigenic in this study are
curated by selecting proteins with low seroreactivity according to the protein
mircoarray experiments, whereas in other studies proteins classified as
non-antigenic were selected randomly.

2.1.3 External proteome: Bartonella The pathogen Bartonella
henselae was recently analyzed by the Felgner Laboratory using the methods
described in Section 2.1.1. The corresponding dataset, Bartonella, is
used in this work for external validation of ANTIGENpro (Section 2.3). As
highlighted in Bleeker et al. (2003), such validation provides a bias-reduced
evaluation of a predictor. The dataset B.henselae consists of 1463 proteins.
The procedure to select the most antigenic proteins based on the microarray
data, described in Section 2.1.1, was applied to B.henselae resulting in a set
of 73 antigenic proteins. The remaining 1390 were then classified as non-
antigenic for the purpose of evaluating the ability of ANTIGENpro to recover
the most antigenic proteins from an entire proteome. Some basic information
on the source of the sera samples for B.henselae is provided below.

• The B.henselae dataset (Bartonella) consists of sera collected from
cats admitted to animal shelters in the San Francisco area. The dataset
consists of 62 sera samples exposed to Bartonella as confirmed by the
gold standard IFA titers test. The naive set is composed of 67 samples
confirmed as not exposed via IFA titers in addition to sera from eight
specific pathogen free (SPF) cats. The dataset is described in detail in
Vigil et al. (2010).

Table 3. Size of the initial feature sets

Feature set Size Feature set Size

[Natural-20:M] 20 [ClustEM-17:M] 17
[Natural-20:D] 400 [ClustEM-17:D] 289
[Hydropho-5:M] 5 [Computed] 6
[Hydropho-5:D] 25 [Predicted] 6

Table 4. Amino acid alphabets used to compute frequencies of monopeptides
and dipeptides

Name Amino acid groups

Natural-20a A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y

Hydropho-5b CFILMVW,NQSTY,DEKR,AG,HP

ClustEM-17c DE,IL,NQ,A,C,F,G,H,K,M,P,R,S,T,V,W,Y

Amino acids groups are separated by commas.
aNatural alphabet.
bGrouped by hydrophobicity (Idicula-Thomas et al., 2006).
cGrouped from eight numeric scales using EM algorithm (Smialowski et al., 2007).

2.2 Sequence-based features
From the immunology literature detailed in Section 1, only a small set of
primary sequence characteristics are usually considered indicative of protein
antigenicity. Here to train ANTIGENpro we take a broader approach by using
a large number of features and feature sets.

We follow a protocol similar to the one proposed to predict protein
solubility on overexpression in Magnan et al. (2009). Among the 23 distinct
feature sets proposed in this previous study, only eight feature sets showed
any correlation with protein antigenicity in preliminary experiments. The
details of these sets are provided below. For consistency and convenience,
the names assigned to each feature set in Magnan et al. (2009) are also used
here.

Six of the eight feature sets are frequencies of amino acid monomers and
dimers using three different amino acid alphabets described in Table 4. The
six sets are denoted by [Name-S:X] where Name-S is the name given
to the alphabet in Table 4, S is the size of the corresponding alphabet and
X takes the value M or D associated with the frequencies of monomers and
dimers over the corresponding alphabet (e.g. [Hydropho-5:M]). The two
remaining feature sets, [Computed] and [Predicted], are described
below. Note that the set of predicted features [Predicted] was modified
to include TMHMM (Krogh et al., 2001) predictions. Feature set sizes are
reported in Table 3. Each feature is normalized to [−1,+1] in the following
experiments (Section 2.3).

• [Computed] Features directly computed from the sequence.

(1) Sequence length n.

(2) Turn-forming residues fraction: N+G+P+S
n , where, for instance, N

is the number of asparagine residues in the sequence.

(3) Absolute charge per residue: | R+K−D−E
n −0.03|.

(4) Molecular weight.

(5) GRAVY Index defined as the averaged hydropathy value (Kyte and
Doolittle, 1982) of the amino acids in the primary sequence.

(6) Aliphatic index: (A+2.9V +3.9I +3.9L)/n (Ikai, 1980).

• [Predicted] Features predicted from the sequence.

(1) Beta residues fraction, as predicted by SSpro (Cheng et al., 2005).

(2) Alpha residues fraction, as predicted by SSpro.
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Table 5. Evaluation of ANTIGENpro by repeated 10-fold cross-validations
(results in bold)

Method Vaxijena ANTIGENpro

Accuracy 59.48 ± 0.140 75.51 ± 0.992
Sensitivity 89.69 ± 0.000 75.88 ± 1.937
Specificity 25.85 ± 0.742 75.14 ± 1.480
MCC 0.20 ± 0.008 0.51 ± 0.020
ROC Area 0.67 ± 0.006 0.81 ± 0.012

Vaxijen is also evaluated using the bacterial and viral antigens of the same datasets.
Standard deviations appear in italic.
aMethod proposed in Doytchinova and Flower (2007b), evaluated using the web server
available at http://www.darrenflower.info/VaxiJen.

(3) Number of domains, as predicted by DOMpro (Cheng et al., 2006).

(4) Exposed residues fraction, as predicted by ACCpro (Cheng et al.,
2005) using a 25% relative solvent accessibility cutoff.

(5) Number of transmembrane helices (TMHs), as predicted by
TMHMM software (Krogh et al., 2001).

(6) Expected number of residues in TMHs, as predicted by TMHMM.

2.3 Antigenicity prediction
The eight feature sets described above and five machine-learning algorithms
are used to design a two-stage architecture for predicting protein antigenicity
from the primary sequence using ensemble methods (Dietterich, 2000).

2.3.1 ANTIGENpro: a two-stage architecture For a given protein set,
denoted train afterwards, the prediction model is computed following
the steps described in this section. First, the eight feature sets described in
Section 2.2 are computed for each sequence in train. The dimensionality
of each feature set is then reduced using the wrapper method described
in Kohavi and John (1997). We defined the Naive Bayes algorithm as the
induction algorithm, a depth-first search as the selection algorithm and the
accuracy estimated by 10-fold cross-validation as the evaluation function
to be optimized. The selection process is stopped when the SD of the
accuracies computed during the last five steps does not exceed 0.01. Forty
distinct primary classifiers are then trained using one of the eight feature sets
describing the sequences in train and one algorithm among Naive Bayes,
C4.5, k-nearest neighbors, neural networks and SVMs. We used LIBSVM
(Chang and Lin, 2001) for SVM, which implements the sequential minimal
optimization (SMO) algorithm proposed in Fan et al. (2005) and Weka
(Witten and Frank, 2005) for the other algorithms. Finally, the 40 probability
estimates produced by the primary predictors are used as input to a second
stage SVM classifier. For a new protein sequence, the probability estimate
computed by the second stage SVM predictor is the final ANTIGENpro
prediction.

2.3.2 Evaluation and comparison with previous methods Repeated cross-
validations are usually recommended to obtain reliable accuracy estimates
(Dietterich, 1998; Kohavi, 1995). To form the cross-validation folds, we
followed two distinct protocols described below.

In the first cross-validation experiment, the six protein datasets are merged
together and the resulting set is then balanced by randomly removing non-
antigenic proteins until the subsets are equal in size (576 examples of
each class). Then, a standard 10-fold cross-validation is launched with a
randomized balanced split of the dataset. This process is repeated five times
with a different selection of negative examples for each experiment. The
following standard evaluation criteria are computed: accuracy, sensitivity,
specificity, Matthews correlation coefficient and area under the ROC curve.
For each evaluation metric, the mean and SD of the five runs are reported in
Table 5. The method proposed in Doytchinova and Flower (2007b), Vaxijen,

Fig. 1. ROC curves calculated from the 10-fold cross-validation of
ANTIGENpro and Vaxijen (Doytchinova and Flower, 2007b).

Table 6. Evaluation of ANTIGENpro by repeated cross-validations over the
six distinct protein sets

Test set Test set size Training set size Accuracy

PAntigens 213a 726 81.60
Brucella 140 1012 70.00
Burkholderia 10 1142 66.00
Candida 6 1146 66.67
Malaria 228 924 59.96
Tuberculosis 342 754 68.30

a This set only contains positive examples of protective antigens. All other protein sets
are balanced (50% positive examples, 50% negative examples).

is evaluated using the same criteria on the bacterial and viral proteins of
the same datasets (around 75% of the proteins). Results are also reported in
Table 5. ROC curves for both predictors are given in Figure 1.

In the second cross-validation experiment, the folds correspond to the
source datasets. Five of the six datasets are used for training and the sixth
dataset, associated primarily with a different pathogen, is used for testing
purposes. This process is repeated for all six datasets. For each experiment,
the five training sets and the test set are separately balanced using the same
strategy described above for 10-fold cross-validation. An exception is made
when handling PAntigens because the set contains only antigenic proteins,
thus no balancing is performed. Note that this protocol is not a standard cross-
validation protocol since the folds change during the process. Also, due to
the large difference in size of the six protein sets, this protocol is unfavorable
for a reliable evaluation of the predictor. In fact, in most cases the training
set is either large but evaluated on a small test set or the training set is
small but evaluated on a large test set. Nevertheless, this approach allows
evaluation of different aspects of the predictor not highlighted by the 10-
fold cross-validation. Five repetitions of the whole process are performed
with a random selection of the non-antigenic proteins for each experiment.
Description of the datasets and results for each fold are reported in Table 6.

In addition to the experiments described above, we perform an external
evaluation of ANTIGENpro, trained from the six datasets listed above.
The evaluation is performed on an independent dataset obtained by protein
microarray analysis for the pathogen Bhenselae described in Section 2.1.3.
The probability estimates computed by the predictor are further evaluated
using several prediction thresholds listed in Table 8. The accuracy, specificity
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and sensitivity of the predictor for each threshold are reported in the same
table and discussed in Section 3.

3 RESULTS AND DISCUSSION
Here we present a three-pronged approach to assess the
ANTIGENpro methodology. First, an internal validation is
performed to determine if ANTIGENpro can discriminate the most
antigenic from the least antigenic proteins in our curated data. For
this purpose, ANTIGENpro is evaluated on the six protein sets
described in Section 2.1 by repeated cross-validations using standard
10-fold cross-validation and dataset-fold cross-validation following
the protocol described in Section 2.3.2. Results of the standard 10-
fold cross-validation runs are reported in the last column of Table 5
and in Figure 1. Results for the dataset-fold cross-validation runs are
reported in Table 6. These results clearly show that ANTIGENpro
performs well at the internal discrimination task.

Next, a validation experiment is performed using the set
PAntigens to assess ANTIGENpro’s ability to recognize
confirmed protective antigens. For this experiment, ANTIGENpro
is trained using only the microarray data and the accuracy on
PAntigens is calculated. The results of this experiment indicate
that a predictor trained solely on protein microarray data can predict
truly protective antigens with accuracy that is significantly better
than random.

Finally, armed with a classifier that we know can discriminate the
most antigenic from the least antigenic proteins and can recognize
confirmed protective antigens, we perform an external validation
on an entire proteome to assess ANTIGENpro’s ability to recover
likely protective antigens in a real-world setting. The Bartonella
dataset, described in Section 2.1.3, is used for this purpose and the
results of the experiment are reported in Tables 7 and 8. These results
indicate that ANTIGENpro can be used effectively to identify likely
protective antigens from an entire proteome.

3.1 Internal validation
The overall accuracy of ANTIGENpro, evaluated by repeated 10-
fold cross-validations, is 75.51% with a prediction threshold of 0.5.
The predictor correctly classifies 75.88% of the antigenic proteins
and 75.14% of the non-antigenic proteins. The Matthews correlation
coefficient (noted MCC in Table 5) is 0.51 and the area under the
ROC curve (ROC) is 0.81. These results indicate that the prediction
model has learned relevant characteristics of the most antigenic
versus least antigenic proteins. Finally, the small SDs over the five
runs attest to the stability of the method.

The evaluation of the Vaxijen predictor (Doytchinova and Flower,
2007b) on the datasets used for the 10-fold cross-validation
experiments discussed above (results in Table 5) shows that
this predictor is outperformed by ANTIGENpro. In fact, Vaxijen
correctly classified 59.48% of the bacterial and viral proteins in
these datasets. The other antigens (around 25% of the antigens in
our datasets) cannot be tested since no prediction model is available
for these pathogens. This is a clear shortcoming of Vaxijen. In
addition, the Vaxijen sensitivity (89.69%) and specificity (25.85%)
show an important bias toward positive predictions. Using higher
prediction thresholds for this predictor drops the sensitivity and does
not improve the overall accuracy. The other evaluation criteria and
the ROC curve (Fig. 1) also tend to indicate that ANTIGENpro is
more suitable than Vaxijen for both two-class prediction and ranking.

Table 7. Enrichment among top ranked proteins, ranked by ANTIGENpro,
SignalP and Vaxijen on the Bartonella dataset

Method ANTIGENpro SignalP Vaxijen

Top ranked 2% 5.5 1.7 2.1
Top ranked 5% 4.4 2.7 1.6
Top ranked 10% 3.4 2.9 1.9
Top ranked 25% 2.1 2.2 1.6

Note that the dataset is unbalanced. Bartonella contains 73 antigenic proteins and
1390 non-antigenic proteins. The expected enrichment of a random ranking is 1.0.

Table 8. Evaluation of ANTIGENpro on the Bartonella dataset

Threshold 0.50 0.55 0.60 0.65 0.70

Sensitivity 61.64 57.53 54.79 53.42 52.05
Specificity 55.32 60.79 65.76 71.44 76.19
Accuracy 55.64 60.63 65.21 70.54 74.98

Sensitivity, specificity and accuracy are computed for the thresholds reported in the first
line

The dataset-fold cross-validation runs performed using each
protein set as a fold show that the accuracy of ANTIGENpro
on the five microarray datasets (Table 6) is consistent (66–70%)
with the notable exception of the Malaria dataset (59.96%). As
explained in Section 2.3.2, the protocol followed during this second
set of experiments creates an unfavorable evaluation situation. For
instance, the very small sizes of the datasets Burkholderia (10
proteins) and Candida (6 proteins) prevent a reliable interpretation
of the results on these sets. The significant differences in size
of the datasets may partially explain the overall 6% drop in
accuracy of ANTIGENpro during the second set of experiments.
Residual redundancy within each subset may also contribute to these
observations.

3.2 Known protective antigens: PAntigens
During the standard 10-fold cross-validation experiments, we
observe that nearly all of the protective antigens in PAntigens are
correctly classified (around 90%). In addition, when ANTIGENpro
is trained using the five microarray datasets only, the predictor
correctly classifies 81.6% of the protective antigens in PAntigens
using an unbiased decision threshold of 0.5 (first line of Table 6).
The high accuracy of ANTIGENpro on PAntigens supports the
working hypothesis that protein microarray data can be used to
predict the likelihood that a protein is a protective antigen. This
result is significant because new alignment-independent methods
are required for the discovery of truly novel antigens, and our
data preparation protocol ensures that none of the sequences
in the microarray datasets is homologous with any sequence in
PAntigens.

3.3 External proteome: Bartonella
Here we assess ANTIGENpro’s ability to recover the most antigenic
proteins from an entire proteome using the external dataset
Bartonella. For this test every protein in the dataset must
be classified as either antigenic or non-antigenic, resulting in an
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unbalanced set consisting of only 5% positive examples. This
situation approximates how the method can be applied, and how
it may perform on a new proteome in a real-world situation.

Specifically, the scores produced by computational methods can
be used to screen proteomes for subsets of proteins for further
testing. For this type of application, the enrichment among the top
ranked proteins is a useful metric. The enrichment is calculated as:
(% of positives among top ranked subset)/(% of positives among the
entire proteome), thus the expected enrichment of a random ranking
would be 1.0. For instance, among the proteins ranked in the top 10%
by ANTIGENpro on Bartonella, 17.0% of the antigenic proteins
are recovered while only 5% of the entire proteome is classified as
antigenic, this corresponds to a 3.4-fold enrichment.

The probability estimates produced by ANTIGENpro are used to
rank all the proteins in the proteome. Similarly, the ranking process is
repeated using the scores produced by Vaxijen and SignalP. SignalP
predicts the likelihood a protein contains a signal sequence, which
is one criteria that is frequently used to screen for potential antigens.
The enrichment results for ANTIGENpro, Vaxijen and SignalP
are presented in Table 7 using the top 2, 5, 10 and 25% ranked
proteins. Using the 2, 5 and 10% thresholds, the ANTIGENpro
enrichment values are higher than for both SignalP and Vaxijen.
At the 25% threshold, the SignalP result of 2.2 is slightly higher
than the ANTIGENpro result of 2.1. Overall, the enrichment results
indicate that ANTIGENpro can be used effectively to screen for
likely protective antigens for further analysis or experiments.

The two-class prediction accuracies on the external dataset are
reported in Table 8. These results show that using a threshold of 0.5
to decide antigenicity yields a low accuracy of 55.64%. However,
using higher prediction thresholds results in a significant increase in
the accuracy of the predictor while the decrease in sensitivity is less
significant. This is clearly a desirable characteristic of the predictor.
In fact, when the threshold is set to 0.65, the accuracy is 70.54%
(+14.90) with a sensitivity of 53.42% (−8.22%). This external
evaluation of ANTIGENpro shows that using higher prediction
thresholds to decide protein antigenicity allows a significantly better
recognition of antigenic and non-antigenic proteins.

4 CONCLUSION
Prediction of the most antigenic proteins produced by a pathogen
is an important and difficult problem. Such predictors could be
used to identify the best vaccine candidates for a pathogen or for
diagnostic tests. One key issue associated with the prediction task is
the difficulty of classifying antigenic and non-antigenic proteins on a
large scale and the lack of public databases dedicated to this purpose.
In this work, we have used reactivity data obtained by protein
microarray data analysis to prepare relatively large sets of examples.
From these protein sets and 213 known protective antigens, we have
designed a two-stage architecture to predict protein antigenicity from
the primary sequence. The resulting predictor, ANTIGENpro, is the
first sequence-based predictor trained using a large non-redundant
dataset mainly obtained by protein microarray data analysis. In
addition, ANTIGENpro is the only alignment-free predictor not
designed for a specific pathogen category.

The results obtained during the evaluation experiments provide
several interesting conclusions. First, despite the inherent noise in
protein microarray data, it can be used to effectively categorize
both antigen and non-antigenic proteins for training purposes.

The results demonstrate that this source of data can be used
effectively for this problem: 81.6% of the known protective
antigens are correctly classified when the model is trained only
on balanced protein microarray datasets and an unbiased decision
threshold of 0.5 is used. In addition, the cross-validation results
indicate that ANTIGENpro can predict protein antigenicity from
sequence alone with accuracy that is significantly better than
random (75.51%). These cross-validation results also show that
it significantly outperforms Vaxijen, the only previously reported
method that does not directly rely on homology to known protective
antigens.

The results on the external validation dataset demonstrate
that ANTIGENpro performs well when ranking entire proteomes
according to likely antigenicity, when compared with Vaxijen
and SignalP. In addition, the method presented here can rapidly
take advantage of the massive amount of data that will
be available thanks to the high-throughput protein microarray
technology developed for studying the humoral immune response
to pathogen infections. ANTIGENpro is available online at
http://scratch.proteomics.ics.uci.edu.
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