

Transcriptomics of liver tissue, PBMCs, and monocytes in alcoholic hepatitis

¹University of California, Irvine, CA, USA; ²University of Southern California, Los Angeles, CA, USA; ³Pacific Northwest National Laboratory, Richland, WA, USA; ⁴VA Long Beach Healthcare System, Long Beach, CA, USA

Introduction

- Alcoholic Hepatitis (AH) is an alcohol-induced inflammatory liver disease with high mortality and morbidity rates.
- The factors that determine the progression to AH and the subsequent prognosis are not well understood.
- This study used RNA sequencing for gene expression profiling of human liver tissue, peripheral blood mononuclear cells (PBMCs), and monocytes from patients with AH and healthy controls.

Methods

Sample ascertainment.

- The blood samples and liver biopsies in this study were collected at baseline by the Southern California Alcoholic Hepatitis Consortium (SCAHC) from Alcoholic Hepatitis patients (AH, n=15), and from normal healthy controls (normal, n=15). For 7 of the AH patients, a liver tissue biopsy was also collected at baseline.
- As normal liver tissue controls, RNA sequencing data of normal liver samples (n=3) from the Human Protein Atlas study (www.proteinatlas.org and Kampf et al., FASEB, 2014) were downloaded from EMBL-EBI (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1733/ samples/).

RNA sequencing.

- PBMCs and monocytes were isolated by the Liu lab (USC) from the blood samples into cell pellets. RNA was extracted from the liver biopsies and cell pellets.
- RNA was sequenced at 2x100 paired-end on an Illumina HiSeq.
- The RNAseq data was aligned to the human genome (hg19) using Tophat2 alignment software (Kim et al., Genome Biol. 2013).

Differential gene expression analysis.

- Differential expression (DE) analysis was performed with the Cufflinks software (Trapnell et al., Nature Methods, 2012), using upper quartile normalization between the data files.
- Normalized DE between the groups was filtered for FPKM>=2, abs(log2(fold change)) >= 1.2, \bullet and that were significant at FDR-adjusted p-value <= 0.05.
- Heatmaps were constructed with cummeRbund (Goff et al., 2012) to display a subset of the differentially expressed genes that met the thresholds listed above.

Proteomics

• Proteomics data was provided by the Jacobs lab (PNNL) from a high mass accuracy LC-MS/ MS platform. Data was filtered by abs(fold change) > 0.2, and p-value <= 0.05.

Pathway Analysis.

Ingenuity Pathway Analysis IPA software (QIAGEN) was used to determine the top canonical pathways and for comparison to proteomics data.

Acknowledgements

- The Southern California Alcoholic Hepatitis Consortium (SCAHC) is comprised of researchers at the following locations: Veterans Administration Long Beach (VALB), Long Beach, CA; University of California, Los Angeles (UCLA-Harbor), Los Angeles, CA; University of Southern California (USC), Los Angeles, CA; Pacific Northwest National Laboratory (PNNL), Richland, WA; University of California, Irvine (UCI), Irvine, CA
- Funding for this study was provided to the researchers in the SCAHC by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) award numbers: U01AA021838(Norden-Krichmar), U01AA021886 (Morgan), U01AA021884 (Morgan), U01AA021918 (Jacobs), U01AA021898 (French), and U01AA021857 (Liu).
- The authors would also like to thank and acknowledge the members of the UC Irvine Genomics High-Throughput Facility (GHTF) for their role in the RNA extraction and sequencing of the samples.

Contact Information Email: tnordenk@uci.edu

Trina M. Norden-Krichmar¹, Christophe Magnan¹, Zhang-Xu Liu², Jon Jacobs³, Timothy Morgan⁴, and the Southern California Alcoholic Hepatitis Consortium (SCAHC)

Ingenuity Canonical Pathways	-log(B-H pval
Granulocyte Adhesion and Diapedesis	6.2
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	4.1
TREM1 Signaling	4.1
Agranulocyte Adhesion and Diapedesis	4.0
Complement System	3.7
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	3.6
Phagosome Formation	3.3
Atherosclerosis Signaling	3.2
Osteoarthritis Pathway	3.2
Inflammasome pathway	3.0
Communication between Innate and Adaptive Immune Cells	2.9
Glucocorticoid Receptor Signaling	2.3
IL-8 Signaling	2.3
LXR/RXR Activation	2.2

