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Abstract

We address the problem of efficiently learn-
ing Naive Bayes classifiers under class-
conditional classification noise (CCCN).
Naive Bayes classifiers rely on the hypothesis
that the distributions associated to each class
are product distributions. When data is sub-
ject to CCC-noise, these conditional distribu-
tions are themselves mixtures of product dis-
tributions. We give analytical formulas which
makes it possible to identify them from data
subject to CCCN. Then, we design a learn-
ing algorithm based on these formulas able
to learn Naive Bayes classifiers under CCCN.
We present results on artificial datasets and
datasets extracted from the UCI repository
database. These results show that CCCN can
be efficiently and successfully handled.

1. Introduction

Naive Bayes classifiers are widely used in Machine
Learning. Indeed, they can efficiently be learned, they
provide simple generative models of the data and they
achieve pretty good results in various classification
tasks such as text classification. Naive Bayes classifiers
rely on the hypothesis that the attributes of the de-
scription domain are independent conditionally to each
class, i.e. conditional distributions are product distri-
butions, but it has often been noticed that they keep
achieving good performances even when these condi-
tions are not met (Domingos & Pazzani, 1997). Nev-
ertheless, Naive Bayes classifiers are not very robust to
classification noise since independence of the attributes
is not preserved. In this paper, we address the problem
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of efficiently learning binary Naive Bayes classifiers un-
der class-conditional classification noise (CCCN), i.e.
when the label l of any example is flipped to 1− l with
a probability ηl which only depends on l. Eliminat-
ing class noise in datasets has been studied in several
papers (see (Zhu et al., 2003) for a general approach
and (Yang et al., 2003) for an approach dedicated
to Naive Bayes classifiers: however, the model of noise
the authors consider in the last reference is not compa-
rable to the model we consider). When data is subject
to CCC-noise, conditional distributions become mix-
tures of product distributions. Mixtures of product
distributions are still fairly simple distributions which
have been studied in several papers (Geiger et al.,
2001; Whiley & Titterington, 2002; Freund & Man-
sour, 1999; Feldman et al., 2005). In particular, mix-
tures of product distributions can be identified from
data under some mild hypotheses. However, these re-
sults are not very useful in order to learn Naive Bayes
classifiers under CCC-noise: indeed, they make it pos-
sible to estimate the mixture coefficients by using each
conditional distribution separately, providing estima-
tors whose convergence rates are rather slow, while
it should be possible to use them together to obtain
better and faster estimates. In this paper, we aim at
finding efficient estimates based on the available data
in the CCCN learning framework.

We give analytical formulas which express the mix-
tures coefficients of the conditional distributions in
function of the noisy conditional distributions. We
use these formulas to design efficient estimators for
the mixture coefficients. We also show how these for-
mulas can be used to estimate the parameter P (y = 1)
in an asymetrical semi-supervised learning framework,
where the available data is made of unlabeled and pos-
itive examples (i.e. from one class). Next, we use
these estimators to design an algorithm, NB-CCCN ca-
pable of learning a Naive Bayes classifier from labeled
data subject to CCC-noise. We also design a learn-
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ing algorithm NB-CCCN-EM which combines NB-CCCN
and the EM method: NB-CCCN-EM starts by comput-
ing a Naive Bayes classifier by using NB-CCCN and then,
uses the EM method to maximize the likelihood of
the learning data. We carry out experiments on both
artificial data generated from randomly drawn Naive
Bayes classifiers and data from the UCI repository. We
compare four learning algorithms: the classical Naive
Bayes algorithm (NB), an algorithm (NB-UNL) which
directly estimates the mixture coefficients from unla-
beled data by using analytical formulas taken from
(Geiger et al., 2001), NB-CCCN and NB-CCCN-EM. These
experiments show that when CCC-noise is added to
data, NB-UNL, NB-CCCN and NB-CCCN-EM succeed in
handling the additional noise in the data, achieving
performances which are close to their performances
on non-noisy data. The two latter algorithms are far
better than NB-UNL. Obviously, NB-CCCN-EM achieves
better performance than NB-CCCN when the compari-
son criterion is the likelihood. This property entails
that NB-CCCN-EM achieves better performance than
NB-CCCN on classification tasks on artificial data drawn
from noisy product distributions, since in that case,
maximizing the likelihood is a good heuristic for clas-
sification. However, NB-CCCN achieves better perfor-
mance than NB-CCCN-EM on real data.

A discussion on supervised learning under class-
conditional classification noise is carried out in Sec-
tion 3. We define the notion of identifiability under
class-conditional classification noise and we relate it to
the identifiability of mixtures of distributions. We give
the analytical formulas which express the mixtures co-
efficients of the conditional distributions in function of
the noisy conditional distributions in Section 4. We
also describe in Section 4 the estimators of these coef-
ficients and the algorithms NB-CCCN, NB-CCCN-EM and
NB-UNL. Our experiments are described in Section 5.

2. Preliminaries

2.1. The Naive Bayes Classifier

Let X =
mQ

i=1

Xi be a domain defined by m symbolic

attributes. For all x ∈ X, let us denote by xi the pro-
jection of x on Xi and let us denote by Dom(xi) the set
of possible values of xi. Let P be a probability distri-
bution over X and let Y = {0, 1} be the set of classes. Y

is provided with conditional probability distributions
P (.|x) for all x ∈ X.When attributes are independent

conditionally to each class, then P (x|y) =
mQ

i=1

P (xi|y) is

a product distribution overX ∀ y ∈ Y .In such a case, the
Bayes classifier is equal to the Naive Bayes classifier

CNB defined by CNB(x) = argmax
y∈Y

P (y)
mQ

i=1

P (xi|y).

Naive Bayes classifiers are completely specified by the
following set of parameters: p = P (y = 1), P i

+(k) =
P (xi = k|y = 1) and P i

−(k) = P (xi = k|y = 0) where
1 ≤ i ≤ m and k ∈ Dom(xi). An instance of these
parameters is called a model and is denoted by θ.

2.2. Identifying Mixture of Product
Distributions

Let P be a set of distributions over X . We say that
the 2-mixtures of elements of P are identifiable if for
any P1, P2, P

′
1, P

′
2 ∈ P and any α, α′ ∈ [0, 1],

αP1 + (1− α)P2 = α′P ′
1 + (1− α′)P ′

2

⇒ α′ = α, P ′
i = Pi ∀i or α′ = 1−α, P ′

1 = P2, P
′
2 = P1.

A necessary and sufficient condition for identifiability
of finite mixtures has been given in (Yakowitz & Spra-
gins, 1968). Identifiability of finite mixtures of prod-
uct distributions has been proved in (Geiger et al.,
2001; Whiley & Titterington, 2002) (under mild con-
ditions). Learning of product distributions has been
studied in (Freund & Mansour, 1999) and more re-
cently in (Feldman et al., 2005).

As we shall use it in the experiments, let us give with-
out proof and explanations some details on the way
mixture of two distributions on binary attributes are
identified in (Geiger et al., 2001). These formulas hold
when the number of attributes is at least three.

Let P be a mixture of two product distributions
P (.|y = 0) and P (.|y = 1) over X = {0, 1}r where
the mixture coefficient is α = P (y = 1). Let zij...r =
P (xi = 1, xj = 1, ..., xr = 1), pi = P (xi = 1|y = 1),
qi = P (xi = 1|y = 0), α = P (y = 1). Therefore
zij...r = αpipj ....pr + (1− α)qiqj ...qr.

Let s, x1, ..., xm, u1, ..., um be the new coordinates af-
ter the following transformation: α = (s + 1)/2, pi =
xi +(1−s)ui, qi = xi−(1+s)ui. A second transforma-
tion on coordinates z is recursively defined as follows:
zij ← zij − zizj , zijr ← zijr − zijzr − zirzj − zjrzi −
zizjzr and so forth... Then, x, u, s can be computed as
follows: xi = zi, u1 = ±

√
z12z13z23 + (z123)2/4/z23,

s = −z123/(2u1z23), ui = z1i/(p2(s)u1) for i >
1 with p2(s) = 1 − s2. In Section 4.5, we propose an
algorithm based on these formulas to compute Naive
Bayes models from unlabeled data.

3. Supervised Statistical Learning
under CCCN

Let X be a discrete domain, and let Y = {0, 1}. In su-
pervised statistical learning, it is supposed that exam-
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ples (x1, y1), . . . , (xl, yl) are independently and iden-
tically distributed according to a probability distribu-
tion P over X×Y . Then, the goal is to build a classifier
f : X → Y which minimizes the functional risk R(f) =
P (y 6= f(x)), i.e. which approximates the Bayes clas-
sifier f∗ defined by f∗(x) = ArgMaxyP (y|x). Here,
we consider the case where the examples are submited
to an additional class conditional classification noise.
That, is, we suppose that the examples are indepen-
dently drawn according to the probability distribution
P
−→η defined by P

−→η (x, 1) = (1− η1)P (x, 1)+ η0P (x, 0)
and P

−→η (x, 0) = η1P (x, 1) + (1 − η0)P (x, 0) where
−→η = (η0, η1) ∈ [0, 1]2. However, our goal remains
the same as in the original problem: minimizing the
risk relative to P . For any distribution Q on X × Y
such that Q(1) =

∑
x∈X Q(x, 1) ∈ (0, 1), let us denote

by Q+ (resp. Q−) the distribution defined on X by
Q+(x) = Q(x, 1)/Q(1) (resp. Q−(x) = Q(x, 0)/Q(0)
where Q(0) = 1−Q(1)).

Note that if we let P ′(x, y) = P (x, 1− y), η′0 = 1− η1

and η′1 = 1 − η0, the distributions P
−→η and P ′

−→
η′ are

identical while the Bayes classifiers associated with P
and P ′ are complementary. Hence, we shall suppose
that η0 + η1 ≤ 1 to raise ambiguity. Note also that
when η0 +η1 = 1, P

−→η
+ (x) = P

−→η
− (x) = P (x) and there-

fore, nothing better can be done than predicting the
labels randomly. So, we shall suppose from now that
η0 + η1 < 1.

It may happen that Bayes classifiers are identical for
the two distributions P and P

−→η : P
−→η (1|x) ≥ P

−→η (0|x)

⇔ (1− η1)P (1|x) + η0P (0|x) ≥ (1− η0)P (0|x) + η1P (1|x)

⇔ (1−2η1)P (1|x) ≥ (1−2η0)P (0|x). When the classifica-
tion noise is uniform (i.e. η0 = η1) and < 1/2, the dis-
tributions P and P

−→η define the same Bayes classifier.
This is also the case when the problem is deterministic,
i.e. P (1|x) = 0 or P (0|x) = 0 and η0, η1 < 1/2.

In all these cases, the strategy which consists in mini-
mizing the empirical risk is as consistent for one distri-
bution as for the other. But when the Bayes classifiers
do not coincide, another strategy should be taken. Let
us compute R

−→η (f) = P
−→η (f(x) 6= y) for any classifier

f : X → Y . Let us denote pf = P (f(x) = 1) and
Pj(x, i) = P ((x, i)|f(x) = j).

R
−→η (f) = P

−→η
0 (x, 1) · (1− pf ) + P

−→η
1 (x, 0) · pf

= [(1− η1)P0(x, 1) + η0P0(x, 0)] · (1− pf )

+ [(1− η0)P1(x, 0) + η1P1(x, 1)] · pf

= (1− pf )[(1− η0 − η1)P0(x, 1) + η0]

+ pf [(1− η0 − η1)P1(x, 0) + η1]

= (1− η0 − η1)R(f) + η1 · pf + η0 · (1− pf ).

Therefore, we need to minimize

R(f) =
R
−→η (f)− η1pf − η0(1− pf )

1− η0 − η1
(1)

which does not boil down to minimizing R
−→η (f) and

can be a difficult task since in general, we may not
suppose that the noise rates are known.
Consider a simple example: let X = {a}, let P1 be

such that P1(0|a) = 1/3,
−→
η1 = (0, 0), P2 be such that

P2(0|a) = 2/3 and −→η2 = (1/2, 0). We have P
−→
η1

1 = P
−→η2
2

while the Bayes classifiers associated with P1 and P2

are complementary. Therefore, the problem seems to
be ill-posed when the Bayes classifiers are different
for P and P

−→η . However, when the underlying
distribution P is known to belong to some restricted
set of distributions P, the problem may be feasible.

Definition 1. Let P be a set of distributions over
X × Y . We say that P is identifiable under class con-
ditional classification noise if for any P ∈ P, any noise
rates η0 and η1 satisfying η0 +η1 < 1, P

−→η determines
P , i.e. ∀P1, P2 ∈ P,∀−→η 1 = (η0

1 , η1
1),−→η 2 = (η0

2 , η1
2) ∈

[0, 1]2 such that η0
1 + η1

1 < 1 and η0
2 + η1

2 < 1,

P
−→η 1
1 = P

−→η 2
2 ⇒ P1 = P2 and −→η 1 = −→η 2.

Let
p = P (y = 1) =

∑
x∈X

P (x, 1). (2)

We have(
P
−→η
+ (x) = αP+(x) + (1− α)P−(x)

P
−→η
− (x) = βP+(x) + (1− β)P−(x)

(3)

where

α =
p · (1− η1)

p · (1− η1) + (1− p)η0
(4)

β =
p · η1

p · η1 + (1− p) · (1− η0)
(5)

P
−→η
+ (x) and P

−→η
− (x) are mixtures of the two distribu-

tions P+(x) and P−(x).

Lemma 1. Let P be a probability distribution over
X ×Y , let −→η = (η0, η1) ∈ [0, 1]2 such that η0 + η1 < 1
and let p, α and β be defined by (2), (4) and (5). Then,
(α = 0⇔ p = 0)⇒ β = 0
(β = 1⇔ p = 1)⇒ α = 1
(α = β)⇔ (p = 0 ∨ p = 1).

Proof. Straightforward.
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It can easily be derived from previous equations that

η0 =
(p− β)(1− α)

(1− p)(α− β)
and η1 =

β(α− p)

p(α− β)
. (6)

These relations show that even if α and β are known,
the values of p, η0 and η1 are not determined yet: for
any p ∈ [min(α, β),max(α, β)] there exist some val-
ues of η0 and η1 which are consistent with the data.
However, it is easy to show the following proposition.
Proposition 1. Let P be a class of distributions over
X×Y and let Q = {P (·|y)|y = 0 or y = 1, P ∈ P}. If
the 2-mixtures of Q are identifiable, then P is identi-
fiable under class conditional classification noise.

Proof. Let P ∈ P and η0, η1 be noise rates satisfy-
ing η0 + η1 < 1. There exist unique mixture coeffi-
cients such that P

−→η
+ (x) = αP+(x) + (1−α)P−(x) and

P
−→η
− (x) = βP+(x) + (1− β)P−(x). We have P

−→η (1) =
(1−η1)p+η0(1−p) = α(p−β)

α−β + (1−α)(p−β)
α−β = p−β

α−β and
therefore

p = β + (α− β)P
−→η (1). (7)

Then, equations (6) determine η0 and η1.

4. Learning Mixtures of Product
Distributions under CCCN

From previous section, the set of 2-mixtures of prod-
uct distributions is identifiable from CCC-noise. That
is, Naive Bayes classifiers can be learned from data
subject to class conditional classification noise. But,
estimating the mixture coefficients by using data from
P
−→η
+ and P

−→η
− separetely provides estimators whose con-

vergence rates are very low. We show below that, by
using data drawn according to P

−→η , we obtain simple
and efficient estimates of the mixture coefficients and
of the parameters which depend on them.

4.1. Analytical Expressions for Mixture
Coefficients

Let P1 and P2 be two product distributions over X1×
X2, let x1 and x2 be the attributes corresponding to
X1 and X2. For any distribution Q over X1×X2, any
i = 1, 2 and any c ∈ Xi, let us denote Q(xi = c) by
Qi(c). Let Qα = αP1 +(1−α)P2 and Qβ = βP1 +(1−
β)P2 be two mixtures of P1 and P2. Suppose that α 6=
β. We can express P1 and P2 as linear combination of
Qα and Qβ :{

(α− β)P1 = (1− β)Qα − (1− α)Qβ

(α− β)P2 = αQβ − βQα
(8)

Let (a, b) ∈ X1 ×X2. We have Qα(a, b) = αP1(a, b) +
(1 − α)P2(a, b) = αP 1

1 (a)P 2
1 (b) + (1 − α)P 1

2 (a)P 2
2 (b)

and then, by replacing P1 and P2 with the expressions
provided by equations (8),
(α− β)2Qα(a, b) =

α[(1−β)Q1
α(a)−(1−α)Q1

β(a)][(1−β)Q2
α(b)−(1−α)Q2

β(b)]

+(1− α)[αQ1
β(a)− βQ1

α(a)][αQ2
β(b)− βQ2

α(b)].

After simplifications, we obtain

(α− β)2D = α(1− α)C, (9)

where C = (Q1
α(a) − Q1

β(a))(Q2
α(b) − Q2

β(b)) and D =

Qα(a, b)−Q1
α(a)Q2

α(b). Similarly, we have

(α− β)2E = β(1− β)C, (10)

where E = Qβ(a, b)−Q1
β(a)Q2

β(b) .

If β = 1 or β = 0, (9) can be used to directly compute
α:

α =

 D
D+C

if β = 1
C

D+C
if β = 0

(11)

Suppose now that β(1− β) 6= 0.

From (9), we get α2 = αC−βD(β−2α)
C+D . Replacing α2

with this expression in (10), we obtain an expression
of α as a function of β:

α = β · (1− β)(C + D)− βE

E(1− 2β)
(12)

Now, replacing α with this expression in (10), we ob-
tain

β · (1− β) · (β2 − β + λβ) = 0 (13)

where λβ = CE
(C+D+E)2−4DE . Since β(1− β) 6= 0,

β ∈

(
1 +

p
1− 4λβ

2
,
1−

p
1− 4λβ

2

)
(14)

which provides the two admissible solutions (α1, β1)
and (α2, β2) to the problem. Note that α2 = 1 − α1

and β2 = 1− β1.

We have proved the following proposition:

Proposition 2. Let Qα = αP1 +(1−α)P2 and Qβ =
βP1+(1−β)P2 be mixtures of the product distributions
P1 and P2. Suppose that α 6= β. Then, (11), (12)
and (14) provide analytical expressions of the mixture
coefficients α and β.

4.2. Learning Bayes Classifiers from Positive
and Unlabeled Data

A particular semi-supervised learning framework sup-
pose that available samples are unlabeled or labeled
according to some predefinite class, that may be called
the positive class (see (DeComité et al., 1999; Denis
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et al., 2003; Li & Liu, 2003; Li & Liu, 2005) ). That is,
it is supposed that two sources of data provide sample
according to the two following distributions over X:
P (x) = P (x, 0) + P (x, 1) and P (x|1). In this frame-
work, a critical parameter is P (y = 1): often, it is
supposed that it is given, as an additional piece of in-
formation on the problem. Proposition 2 shows that
when Naive Bayes classifiers are used in this frame-
work, the parameter P (y = 1) can be estimated from
data according to equation (13).
Corollary 1. Let P be a distribution over X × Y
such that P+ and P− are product distributions over
X. Let x1 and x2 be two different attributes, let
a ∈ Dom(x1), b ∈ Dom(x2) and let us denote P (x1 =
a, x2 = b) by P 1,2(a, b) , P (xi = c, 0)+P (xi = c, 1) by
P i(c) and P (xi = c|1) by P i(c|1) for any c ∈ Dom(xi).
Then,P (y = 1) =

P 1,2(a, b)− P 1(a|1)P 2(b|1)

P 1,2(a, b) + P 1(a)P 2(b)− P 1(a)P 2(b|1)− P 1(a|1)P 2(b)
·

(15)

Proof. Let Qα(x) = P 1,2(x) = P 1,2(x|1)P (y = 1) +
P 1,2(x|0)P (y = 0) and Qβ(x) = P 1,2(x|1): Qα is a
mixture of the two product distributions P 1,2(x|1) and
P 1,2(x|0) with P (y = 1) as mixture coefficient. We
have also β = 1. Formula 11 yields the formula stated
in the corollary.

A consistent estimator of P (y = 1) can be derived
from equation 15. From any samples Sunl and Spos of
unlabeled and positive data, consider equation 15 for
all or some pair of attributes and all or some of their
values: P̂ (y = 1) =P

P̂ i,j(a, b)− P̂ i(a|1)P̂ j(b|1)P
P̂ i,j(a, b) + P̂ i(a)P̂ j(b)− P̂ i(a)P̂ j(b|1)− P̂ i(a|1)P̂ j(b)

·

where the sums are taken over all attributes i and j
and values a ∈ Dom(xi) and b ∈ Dom(xj).

4.3. Learning Bayes Classifiers under Class
Conditional Classification Noise

Equations (14) and (12) can be used to efficiently iden-
tify Naive Bayes classifiers under class conditional clas-
sification noise: let x1 and x2 be two attributes of X,
let X1 = Dom(x1) and X2 = Dom(x2), let P1 and
P2 be defined on X1 × X2 by P1(a, b) = P+(x1 =
a, x2 = b), P2(a, b) = P−(x1 = a, x2 = b), Qα(a, b) =
P
−→η
+ (x1 = a, x2 = b) and Qβ = P

−→η
− (x1 = a, x2 = b).

Two pairs (α1, β1) and (α2, β2) of admissible solutions
are computed using equations (14) and (12); for each
pair, p, η0 and η1 are computed using equations (7) and
(6). Only one of these solutions satisfies η0 + η1 < 1.

Algorithm 1 NB-CCCN: learn a Naive Bayes classifier
from data subject to CCC-noise

Input: S
−→η
lab, a labeled dataset subject to CCCN

1) Compute λ̂α and λ̂β using (17) and (16).

2) Compute values for α and β by solving λ̂β =
β − β2 and λ̂α = α− α2.
3) Select the unique admissible solution (α̂, β̂).

4) Compute a model θ̂ by using equations 8.

Output: θ̂, an estimate of the target model.

We now introduce a learning algorithm, NB-CCCN (al-
gorithm 1), which learns Naive Bayes classifiers from
labeled data subject to class-conditional classification
noise. Let S

−→η
lab be a data set drawn according to P

−→η .
For any pair of attributes xi and xj and for any pair
of elements (a, b) ∈ Dom(xi)×Dom(xj), let

Ĉa,b
i,j = (

d
P
−→η
+ (xi = a)− d

P
−→η
− (xi = a))·

(
d
P
−→η
+ (xj = b)− d

P
−→η
− (xj = b)),

D̂a,b
i,j =

d
P
−→η
+ (a, b)− d

P
−→η
+ (xi = a)

d
P
−→η
+ (xj = b),

Êa,b
i,j =

d
P
−→η
− (a, b)− d

P
−→η
− (xi = a)

d
P
−→η
− (xj = b)

where P̂
−→η
+ and P̂

−→η
− are empirical estimates of P

−→η
+ and

P
−→η
− computed on S

−→η
lab. An estimate of λ̂β of λβ =

β − β2 is computed by:

λ̂β =

P
Ĉa,b

i,j Êa,b
i,jP

(Ĉa,b
i,j + D̂a,b

i,j + Êa,b
i,j )2 − 4D̂a,b

i,j Êa,b
i,j

(16)

where the sums are taken over all pairs (i, j) of at-
tributes and all pair of values (a, b) ∈ Dom(xi) ×
Dom(xj). Similarly, an estimate of λ̂α of α − α2 is
computed by:

λ̂α =

P
Ĉa,b

i,j D̂a,b
i,jP

(Ĉa,b
i,j + D̂a,b

i,j + Êa,b
i,j )2 − 4D̂a,b

i,j Êa,b
i,j

· (17)

Then, let β1 and β2 (resp. α1 and α2) be the two
solutions of λ̂β = β − β2 (resp. λ̂α = α − α2). Only
one pair (αi, βj) is compatible with the hypotheses. A
model is then computed by using equations (8).

4.4. Algorithm to Learn Naive Bayes Models
under CCCN using E.M.

Given a sample S
−→η
lab composed of labeled examples

subject to class-conditional classification noise, we
could build a Naive Bayes classifier by using maximum
likelihood estimates if we could know which examples
have been corrupted. But unfortunately, this piece of
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Algorithm 2 NB-CCCN-EM Learning Naive Bayes clas-
sifiers with CCC-noise using E.M.

Input: S
−→η
lab, a labeled dataset subject to CCCN

1) Run algorithm NB-CCCN, θ0= model infered by
this algorithm
2) ∀(x′, y′) ∈ S

−→η
lab, compute Pr(C(x, y)|θk,−→ηk) using

formulas (18)
3) Compute a new model θk+1 using formulas (18),
(19), (20) and (21)
4) Iterate to step 2 until stabilization

Output: θ̂ML

Algorithm 3 NB-UNL: compute Naive Bayes models
from unlabeled data
Input: z

1) Estimate u+
k =

P
1≤i,j≤m

i6=j 6=k

√
zkizkjzij+(zkij)2/4

P
1≤i,j≤m,i 6=j 6=k

zij
∀k ∈

{1, ..,m}, u−k = −u+
k

2) Estimate s+ = −
P

1≤i,j,k≤m,i 6=j 6=k

zijkP
1≤i,j,k≤m,i 6=j 6=k

2uizjk
, s− = −s+

3) Compute model θ+ (resp. θ−) from u+
1 (resp.

u−1 ) and u+
i or u−i (i > 1) according to the sign of

z1i i.e. such that sign(ui) = sign(z1i/(p2(s)u+
1 ))

(resp. sign(ui) = sign(z1i/(p2(s)u−1 )))
Output: two models θ+ and θ−.

information is missing. E.M. is a standard method
which can be used in such situations. Let θk be a
Naive Bayes model for the data and let −→ηk = (η0

k, η1
k)

be a noise model. For any example (x, y) ∈ S
−→η
lab, we

can compute the probability Pr(C(x, y)|θk,−→ηk) (de-
noted by Pk(C(x, y)) ) that (x, y) has been corrupted
by noise in the model θk,−→ηk:

Pk(C(x, y)) =
P (1− y|x, θk)η1−y

k

P (1− y|x, θk)η1−y
k + P (y|x, θk)(1− ηy

k)
(18)

By using this formula, we can compute for any z ∈
{0, 1} the probability that the label of the exam-
ple were z before the noise step, and then compute
new models θk+1 = {pl

k+1 = Pk+1(y = l), P ial
k+1 =

Pk+1(xi = a|y = l)} and −−→ηk+1 = {η0
k+1, η

1
k+1} by max-

imizing the likelihood of these new data. Knowing
that n = |S

−→η
lab|, S

−→η
l = {(x, y) ∈ S

−→η
lab|y = l}, probabli-

ties pl
k+1, P ial

k+1, ηl
k+1 are computed as follows:

n.pl
k+1 =

X
S
−→η
l

(1− Pk(C(x, l))) +
X
S
−→η
1−l

Pk(C(x, 1− l)) (19)

n.P ial
k+1 =

X
S
−→η
l

xi=a

(1− Pk(C(x, l))) +
X
S
−→η
1−l

xi=a

Pk(C(x, 1− l)) (20)

ηl
k+1 =

P
S
−→η
1−l

Pk(C(x, 1− l)

P
S
−→η
l

(1− Pk(C(x, l))) +
P

S
−→η
1−l

Pk(C(x, 1− l))
(21)

We note NB-CCCN-EM the corresponding algorithm.

4.5. Algorithm to Compute Naive Bayes
Models from Unlabeled Data

In this section, we use formulas from Section 2.2 to
compute Naive Bayes models parameters from unla-
beled data. Note that the zij...r can be estimated
from data. Note also that two models can be com-
puted; each of them depending on the sign of u1. We
deduce from these formulas the Algorithm NB-UNL. Ex-
perimental results on artificial data (Section 5.1) show
that huge samples are necessary to provide accurate
estimates of the parameters of the target models.

5. Experiments

We present now our experiments on artificial data and
data from the UCI repository data.

5.1. Results on Artificial Data

5.1.1. Protocol

The target model θt = {P (y = 1), P+, P−} is
randomly drawn, distributions P+ and P− being
product distributions over {0, 1}10. The learning
datasets are generated with model θt. For each n ∈
{100, 200, ..., 2000}, 200 independent datasets of n ex-
amples are drawn. The results (Figures 1 and 2, Table
1) are averages computed on these 200 datasets. The
class labels computed by θt are flipped with probabil-
ity η1 for examples (x, 1) and η0 for examples (x, 0).
Test sets Stest contain 1000 examples generated from
θt. The classes of the test data are computed accord-
ing to θt; they are not corrupted by any noise.

5.1.2. Accuracy of the Estimates

We first compare the accuracy of estimates provided
by four algorithms: NB-CCCN, standard Naive Bayes
algorithm (denoted by NB), NB-CCCN-EM and NB-UNL.
The criterion for comparison is the Kullback-Leibler
distance dkl between the target distribution P (., .) and
the predicted distribution P̂ (., .). Figure 1 shows the
Kullback-Leibler distance between the inferred models
and the target model as a function of |Slab|.

These results show that NB-CCCN and NB-CCCN-EM pro-
vide accurate estimates of the target and converge
faster than NB-UNL.
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Figure 1. The Kullback-Leibler distance between the tar-
get model and the inferred one as a function of the size of
the training sample. We set η0 = 0.2 and η1 = 0.5.
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Figure 2. Error rates of the algorithms as a function of the
size of the training sample. We set η0 = 0.2 and η1 = 0.5

We have carried out other experiments where EM is
run on randomly drawn initial models: many runs are
necessary to obtain a high likelihood while using the
model inferred by NB-CCCN as the initial model makes
it possible to run EM only once.

5.1.3. Prediction Rate Results

We now present the results obtained for classification
tasks. The experimental protocol is described in Sec-
tion 5.1.1. Two criteria are considered to compare the
four algorithms: the prediction rate (P̂ (f(x) = y)) on
test data (denoted by acc in table 1) and the classical F
score, defined by F = 2·TP

FP+2·TP+FN ; where TP is the
number of positive examples correctly classified, FP
the number of negative examples incorrectly classified
and FN the number of misclassified positive examples.
The results for both criteria are reported in Table 1
and Figure 2 shows the evolution of the error rate

Table 1. Results for experiments on artificial data, for each
algorithm, we report the accuracy acc=P̂ (f(x) = y) and
the F-score F . The examples have 10 binary descriptive
attributes. η0 = 0.2, η1 = 0.5. Best results are in boldface.

Algo. |Slab| 100 500 2000 3000
θt acc 0.884 0.884 0.884 0.884

F 0.925 0.925 0.925 0.925
NB acc 0.534 0.571 0.584 0.590

F 0.562 0.600 0.619 0.627
NB- acc 0.742 0.793 0.857 0.868
CCCN F 0.842 0.876 0.909 0.915
NB-CC acc 0.723 0.845 0.878 0.879
CN-EM F 0.810 0.897 0.921 0.921
NB- acc 0.645 0.705 0.795 0.834
UNL F 0.722 0.777 0.851 0.881

Table 2. Six UCI datasets used: |S| is the size of the
datasets, NbAtt the number of attributes, |Dom(xi)| the
size of the attribute domains.

Dataset |S| NbAtt |Dom(xi)|
House Votes 433 16 2
Tic Tac Toe 958 9 3
Hepatitis 155 19 2-10

Breast Cancer 286 9 2-11
B. C. Wisc. 699 9 10
Bal. Scale 576 4 5

(P̂ (f(x) 6= y)) as a function of |Slab|. These results
show that NB-CCCN and NB-CCCN-EM converge towards
the target very quickly in comparison to NB-UNL. Stan-
dard Naive Bayes algorithm obviously does not iden-
tify the target model.

5.2. Results on UCI Repository Datasets

This section presents experiments on six datasets from
the UCI repository (Merz & Murphy, 1998) and shows
that the performances of NB-CCCN and NB-CCCN-EM
on real data remain very good even when class-
conditional classification noise is added to the data.
We test our algorithms and Naive Bayes algorithm on
datasets: House Votes, Tic Tac Toe, Hepatitis, Breast
Cancer, Breast Cancer Wisconsin, and Balance Scale
(see Table 2). In this last dataset, we have only used
data whose class is ”right” or ”left”.

As for the experimental protocol, we first run algo-
rithms on the datasets without adding noise; secondly,
we added noise to the learning data according to the
noise parameters η0 = 0.2 and η1 = 0.5 without modi-
fying classes of the test data and we relaunch the same
algorithms on these noisy data (see Table 3 for results).
We have used 10-fold cross-validation per experiment
and the results are averaged over 10 experiments.
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Table 3. Prediction rate (ac), log-likelihood (lk) and esti-
mates of the noise rates obtained by the four algorithms
for UCI datasets without noise and when noise is added
to the training examples. MC = Majority class. (*) raw
estimates are slightly negative. We set −→η = (0.20, 0.50)

Dataset MC NB NB- NB-CC
CCCN CN-EM

H.Votes ac 0.62 0.904 0.916 0.882
no noise lk - -3134 -3035 -2915

−→
η̂ - - (.02,.08) (.04,.20)

H.Votes ac 0.38 0.866 0.900 0.873
−→η noise lk - -4130 -3037 -3041

−→
η̂ - - (.33,.58) (.20,.56)

T.T.T. ac 0.65 0.697 0.682 0.697
no noise lk - -8726 -8854 -8726

−→
η̂ - - (.09,.19) (.00,.00)

T.T.T. ac 0.35 0.562 0.664 0.587
−→η noise lk - -8828 -8818 -8815

−→
η̂ - - (.24,.62) (.21,.56)

Hepat. ac 0.79 0.827 0.850 0.770
no noise lk - -1982 -2416 -1902

−→
η̂ - - (.31,.03) (.50,.03)

Hepat. ac 0.21 0.590 0.811 0.758
−→η noise lk - -2095 -2273 -1946

−→
η̂ - - (.25,.55) (.29,.45)

Br.Can. ac 0.70 0.730 0.760 0.718
no noise lk - -2520 -2682 -2448

−→
η̂ - - (.06,.20) (.13,.27)

Br.Can. ac 0.30 0.581 0.732 0.722
−→η noise lk - -2573 -2623 -2479

−→
η̂ - - (.19,.59) (.33,.56)

Br.C.W. ac 0.66 0.973 0.972 0.975
no noise lk - -7244 -7790 -7096

−→
η̂ - - (.01,.12) (.00,.05)

Br.C.W. ac 0.34 0.964 0.967 0.974
−→η noise lk - -9015 -7818 -7395

−→
η̂ - - (.02,.05) (.22,.50)

B.Scale ac 0.50 0.994 0.980 0.993
no noise lk - -3485 -3445 -3484

−→
η̂ - - (.00,.00)* (.00,.00)

B.Scale ac 0.50 0.743 0.847 0.794
−→η noise lk - -3611 -3710 -3611

−→
η̂ - - (.10,.52) (.06,.36)

The results on House Votes, Hepatitis and Breast Can-
cer Wisconsin datasets clearly show that the noise
added to the data has significantly been erased by
NB-CCCN and NB-CCCN-EM, preserving a rather high
classification accuracy. The results on Tic Tac Toe
and Breast Cancer are close to those obtained by the
majority class rule but Naive Bayes classifiers are un-
adapted to these datasets. For Balance Scale dataset,
both NB-CCCN and NB-CCCN-EM are significantly less ac-
curate when noise is added to the learning examples.
Nevertheless, the results remain much better than the
majority class rule.

6. Conclusion

We provide analytical formulas which can be used to
learn Naive Bayes classifiers under class-conditional
classification noise. The algorithms we design achieve
good performances in classification on both artificial
and real data. However, it would be interesting to
precise the rate of convergence of our estimators and
provide theoretical bounds. The experiments we have
carried out suggest that CCC-noise can be erased from
data while noisy test data cannot be used to attest the
successful handling of noise. This observation must be
related to Equation (1) which shows that minimizing
the empirical risk on noisy data is not a consistent
strategy when the noise rates are high. Future work
should include the description of a consistent learning
principle in the CCCN learning framework.
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