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ABSTRACT.This paper presents a study in the asymmetrical semi-supervised learning framework,
where only positive and unlabeled data are available, and anapplication to a bio-data process-
ing problem. We show that under very mild assumptions, the Naive Bayes classifier can be
identified from positive and unlabeled data. From this study, we derive algorithms that we ex-
periment on artificial data. Lastly, we present an application of this work to the problem of the
extraction of local affinities in proteins for the prediction of disulfide connectivity.

RÉSUMÉ.Cet article présente une étude en apprentissage automatique semi-supervisé asymé-
trique, où seules des données positives et non étiquetées sont disponibles, ainsi qu’une applica-
tion à un problème bio-informatique. Nous montrons que sousdes hypothèses faibles, le classi-
fieur naïf de Bayes peut être identifié à partir de données positives et non étiquetées. Nous en dé-
duisons des algorithmes que nous étudions sur des données artificielles. Enfin, nous présentons
une application de ces travaux au problème de l’extraction d’affinités locales dans les protéines
pour la prédiction des ponts disulfures. Les résultats permettent d’étayer une hypothèse sur la
manière de formaliser les données biologiques pour des cas d’interactions physiques locales.
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674 RSTI - RIA — 20/2006. New Methods in Machine Learning

1. Introduction

In this paper, we consider the problem of learning in the asymmetrical semi-
supervised framework. This problem we tackle is also sometimes referred to the prob-
lem of learning from positive and unlabeled data. This particular context of learning
suppose that we deal with binary learning problems and that available data consist in
unlabeled data and data from only one of the two classes, called the positive class (the
other one is called the negative one).

Let X be a discrete feature space and letY = {0, 1} be the set of classes, where
1 denotes the positive class and 0 denotes the negative one. The classical statistical
learning framework assumes the existence of an underlying probability distributionP
overX × Y and that the available examples are elements ofX × Y independently
drawn according toP .

This distributionP determines:

P (x) =
∑

y∈Y

P (x, y) for anyx ∈ X

P (y) =
∑

x∈X

P (x, y) for anyy ∈ Y

P (x|y) =
P (x, y)

P (y)
andP (y|x) =

P (x, y)

P (x)

where respectivelyP (y) 6= 0 andP (x) 6= 0 [1]

In the asymmetrical semi-supervised framework, it is supposed that the available
examples are:

– positive examples drawn according toP (x|1)

– unlabeled examples drawn according toP (x)

This context of learning is intermediary between the classical semi-supervised
learning, where positive, negative and unlabeled data are available, randomly drawn
from distributionsP (x|1), P (x|0) andP (x), and the unsupervised learning where
only estimates of the distributionP (x) are available through unlabeled examples:
positive and unlabeled data provide less information than data in semi-supervised
learning but more than unlabeled data. On the one hand, the classical results on semi-
supervised learning context cannot be used because they assume some knowledge on
the data distribution over the negative class. On the other hand, positive and unlabeled
examples must provide more information than only unlabeledexamples, so estimate
accuracy and classification performances should be improved.

As in the classical learning framework, the goal is to compute from the data a
classifierf : X → Y which minimizes the prediction risk,R(f) = P (f(x) 6= y).
Unfortunately, it can be easily shown that the distributions P (x) andP (x|1) on X
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Asymmetrical Semi-Supervised Learning 675

do not determine the distributionP overX × Y . As a consequence, the best clas-
sifier cannot be inferred from positive and unlabeled data even if we had a complete
knowledge ofP (x) andP (x|1).

However, if we know thatP belongs to some restricted class of distributions, it
becomes possible thatP (x) andP (x|1) determine the distributionP . An example of
such a situation occurs when it is known thatP is deterministic,i.e. P (x, 0) = 0 or
P (x, 1) = 0 for all x ∈ X .

In this paper, we mainly study the case where it is known thatP satisfies the Naive
Bayes assumption: the attributesxi of x are independent conditionally to each class
(P (x|y) =

∏

P (xi|y)). The Naive Bayes rule (cf Section 2.1), which assumes that
target distribution follows this assumption, is well knownto give pretty good results
in classification even if the assumption is not met (Domingoset al.,1996).

In (Geigeret al.,2001), it was shown that distributions which satisfy Naive Bayes
assumption can be identified, up to a permutation of the classes, by unlabeled data
when the number of attributes is at least three. Analytical formulas are provided in
this paper. However, they do not take into account information provided by positive
examples and we show in Section 4.2 that their approach requires a huge number of
examples to obtain accurate estimates (cf Section 4.2), which makes it difficult to use
these formulas in practice.

It is clear that if Naive Bayes distributions are identifiable from unlabeled data,
they are identifiable from positive and unlabeled data. Nevertheless, we show in this
paper that Naive Bayes distributions can be determined frompositive and unlabeled
data under slightly milder conditions than from only unlabeled data. Moreover, we
give new analytical formulas to estimate target distribution from data. These formulas
provide consistent estimators for these parameters. Experimental study (cf Section
4.2) shows that these estimators are significantly more accurate than those given in
(Geigeret al.,2001) and requires much less examples.

In (McCallumet al.,1999), the authors propose a method based on EM (cf Section
2.3) to compute Naive Bayes distribution parameters in the classical semi-supervised
framework based on a maximum likelihood criterion (cf Section 2.2). This method
supposes the knowledge of the distributionP (xi|y = 0). In the asymmetrical semi-
supervised context this distribution is however unknown. We propose a variant of
this method to compute target distribution parameters withthe criterion of the maxi-
mum likelihood (cf Section 2.2) using EM (cf Section 2.3) in the asymmetrical semi-
supervised context.

In order to compare the rate of convergence of these estimators and their perfor-
mances for learning tasks to the estimators defined by (McCallum et al.,1999) for the
semi-supervised context and by (Geigeret al.,2001) for learning from unlabeled data,
we carry out an experimental study on artificial data (Section 4). The obtained results
show that learning from positive and unlabeled data provides significantly better per-
formances than learning from unlabeled data and show that the results are very similar
to the results obtained in the classical semi-supervised learning where labeled exam-
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676 RSTI - RIA — 20/2006. New Methods in Machine Learning

ples from both classes are available. It is a very interesting result because it shows that
the loss of negative examples does not decrease performances.

This study was originally motivated by the problem of the prediction of disulfide
connectivity in proteins (Section 5). Predicting proteinstridimensional structure, from
their sequence of amino acids, is one of the challenges of thecurrent researches in
bioinformatics. This structure is constrained by different kinds of interactions: phys-
ical, electrostatic, etc. Correctly predicting these interactions should considerably
reduce the number of potential structures for the proteins.

In this study, we consider the prediction of disulfide bonds which are the strongest
of these interactions. This phenomena of local interactionarise between two distant
amino acids - cysteines - after their oxidation. Many paperspresent methods to predict
whether a cysteine is bonded, but few of them address the second part of the problem:
predict which cysteine will form a bridge with a given cysteine. We are interested by
this part of the problem.

Most of the contributions on the prediction of the disulfide connectivity in pro-
teins (Fariselliet al.,2001, Fariselliet al.,2002, Vulloet al.,2004) consider pairs of
non bonded cysteines as negative examples, which cannot form a bond. Our main
contribution on that topic is to consider these examples, pairs of non bonded cys-
teines, as unlabeled examples because we suppose that thereis not enough informa-
tion that would explain the lack of interaction. In this case, data are positive (pairs of
bonded cysteines) and unlabeled (pairs of non bonded cysteines): asymmetrical semi-
supervised learning methods are necessary. Our experiments show that considering
that unbounded cysteines are unlabeled examples is a betterstrategy than considering
that they constitute negative examples.

The paper is organized as follows. In Section 2, we give a short survey of methods
and results about the Naive Bayes classifier, EM method and the identifiability prob-
lem. In Section 3, we study the identifiability of Naive Bayesmodels from positive
and unlabeled data. We show that the identifiability problemis well posed and we give
analytical formulas to compute Naive Bayes models for this context of learning. We
also present an algorithm to estimate model parameters based on the maximum likeli-
hood principle using EM. We give in Section 4 experimental results on artificial data
which make it possible to conclude on the rate of convergenceof our algorithms and
their performances for classification tasks. Section 5 presents experimental results on
biological data for the problem of the prediction of disulfide connectivity in proteins.

2. Preliminaries

Section 2.1 presents the Bayes rule, the Naive Bayes assumption and the associ-
ated classifiers. We give in Section 2.2 a short description of the maximum likelihood
principle and its application to the Naive Bayes classifiersin supervised and semi-
supervised contexts. Section 2.3 presents the EM method (Expectation Maximization)
and the application of this method proposed in (McCallumet al.,1999) to compute
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Asymmetrical Semi-Supervised Learning 677

Naive Bayes models parameters in semi-supervised context with the maximum like-
lihood criterion. Lastly, we give in Section 2.4 a short survey of the paper (Geigeret
al., 2001). This work shows Naive Bayes models identifiability from unlabeled data
and provide analytical formulas to compute models parameters.

2.1. The Bayes rule and the Naive Bayes classifier

Let X =
m
∏

i=1

X i be a domain defined bym symbolic attributes. For allx ∈ X ,

let us denote byxi the projection ofx on X i and let us denote byDom(xi) the set
of possible values ofxi. Let P be a probability distribution overX and letY be a
set of classes (Y = {0, 1} all along this paper) provided with conditional probability
distributionsP (y|x) for all x ∈ X .

The optimal decision rule for assigning each objectx ∈ X to a class is theBayes
rule CBayes that selects the classy ∈ Y with the highest probability knowingx.

CBayes(x) = argmax
y

P (y|x)

= argmax
y

P (x|y) · P (y) (x ∈ X, y ∈ Y ) [2]

The Bayes classifier requires complete knowledge of the underlying probability
distribution. It is the reason why it is generally not possible to estimate this classifier
without complementary information or hypotheses.

When the attributes are independent conditionally to each class, that is, the Naive

Bayes assumption is met, thenP (x|y) =
m
∏

i=1

P (xi|y). In such a case, the number of

parameters to be estimated is low:O(dm) whered = max |Dom(xi)|. The Bayes
classifier becomes the Naive Bayes classifierCNB, defined by:

CNB(x) = argmax
y

P (y)
m
∏

i=1

P (xi|y) (x ∈ X, y ∈ Y ) [3]

The assumption of independence is generally not satisfied. However, Naive Bayes
classifier is known to give pretty good results for classification tasks (Domingoset
al., 1996).

WhenY = {0, 1}, Naive Bayes classifiers are completely specified by the fol-
lowing set of parameters:α = P (y = 1) andλikj = P (xi = k|y = j) where
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678 RSTI - RIA — 20/2006. New Methods in Machine Learning

1 ≤ i ≤ m, k ∈ Dom(xi) and j ∈ {0, 1}. An instanceθ = {α, λikj , i ∈
[1, ..., m], j ∈ {0, 1}, k ∈ Dom(xi)} of these parameters is called amodel.

2.2. The maximum likelihood principle

Let S = {(xs, ys), s = 1, ..., l} be a set of independent and identically distributed
data according to the joint probability distributionP (x, y) = P (x) · P (y|x) and letθ
be a model. One quality criterion of the modelθ for a datasetS is the likelihood.

The likelihood L(θ, S) (resp. thelog-likelihood l(θ, S)) of S for the modelθ is
defined by:

L(θ, S) =
l

∏

s=1
P (xs, ys|θ) and l(θ, S) = log L(θ, S) [4]

The maximum likelihood principle recommends to choose a model θ which max-
imizesL(θ, S) – and thus alsol(θ, S).

2.2.1. Likelihood of Naive Bayes models in supervised context

Let n0 (resp. n1) denote the number of examples classified ’0’ (resp. ’1’) in S,
n0 + n1 = l, and letnk

ij denote the number of examples(x, y) in S such thatxi = k
andy = j. We have:

L(θ, S) =

l
∏

s=1

P (ys)

[ m
∏

i=1

P (xi
s|ys)

]

= αn1 · (1− α)n0 ·
∏

1≤i≤m,0≤j≤1
k∈Dom(xi)

λ
nk

ij

ikj [5]

l(θ, S) = log L(θ, S)

= n1logα + n0log(1− α) +
∑

1≤i≤m,0≤j≤1
k∈Dom(xi)

nk
ij log λikj [6]

It can be shown thatL(θ, S) is maximal when:

α =
n1

n0 + n1

λk
ij =

nk
ij

∑

r∈Dom(xi)

nr
ij

[7]
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Asymmetrical Semi-Supervised Learning 679

2.2.2. Likelihood of Naive Bayes models in a semi-supervised context

In the semi-supervised learning context, two datasets are available: Slab =
{(x1, y1), ..., (xl, yl)} is a set of labeled data, andSunl = {x′

1, ..., x
′
l′} is a set of

unlabeled data.

We suppose thatSlab andSunl have been provided by an oracle which, with prob-
ability β, draws a labeled example and with probability1 − β draws an unlabeled
example. Letθ′ = θ ∪ {β}.

The probabilities to draw a labeled examplez = (x, y), or an unlabeled example
z = x with the modelθ′ are computed as follows:

P (z = (x, y)|θ′) = β · P (x, y|θ)
P (z = x|θ′) = (1− β) · P (x|θ) [8]

with

P (x|θ) = P (y = 1|θ)P (x, y|y = 1, θ) + P (y = 0|θ)P (x, y|y = 0, θ) [9]

The likelihood can be written:

L(θ′, Slab, Sunl) =

l
∏

s=1

βP (xs, ys|θ)
l′

∏

r=1

(1 − β)P (x′
r |θ) [10]

With notations defined on previous section:

L(θ′, Slab, Sunl) = βlL(θ, Slab)(1 − β)l′L(θ, Sunl) [11]

with

L(θ, Sunl) =

l′
∏

r=1

(

α
∏

1≤i≤m
k/xi

r=k

λik1 + (1 − α)
∏

1≤i≤m
k/xi

r=k

λik0

)

[12]

The value ofβ which maximizes the likelihood isβ = l
l+l′ , i.e. the proportion of

labeled examples in the learning set. Nevertheless, the parametersα andλk
ij which

maximizeL(θ′, S) cannot be computed using analytical formulas. However, they can
be estimated using methods such as E.M. (cf. Section 2.3).
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680 RSTI - RIA — 20/2006. New Methods in Machine Learning

2.3. Expectation-Maximization method (E.M.)

The EM method was elaborated in (Dempsteret al.,1977) for inference of mixture
models densities. This section presents a short survey of this method and an applica-
tion to Naive Bayes models estimate in the semi-supervised context (McCallumet al.,
1999).

2.3.1. Method

This section describes the E.M. method following (Hastieet al.,2001). Letθ′ a
model as previously defined,Z the set of observed data,Zm the missing data andT
the entire set of the data,T = (Z, Zm). Let us denote by:

– l0(θ
′, T ) the log-likelihood ofT for the modelθ′,

– l1(θ
′, Zm|Z) the log-likelihood ofZm for the modelθ′ knowingZ,

– l(θ′, Z) the log-likelihood ofZ for the modelθ′,

thenl(θ′, Z) + l1(θ
′, Zm|Z) = l0(θ

′, T ), that is to say:

l(θ′, Z) = l0(θ
′, T )− l1(θ

′, Zm|Z) [13]

Assuming that the data are drawn according toθ and thatZ is observed, previous
equality terms are random variables depending ofZm, we can thus compute expected
values of these variables:

E(l(θ′, Z)|Z, θ) = E(l0(θ
′, T )|Z, θ)− E(l1(θ

′, Zm)|Z, θ) [14]

By denotingQ(θ′, θ) = E(l0(θ
′, T )|Z, θ) andR(θ′, θ) = E(l1(θ

′, Zm)|Z, θ), and
knowing thatE(l(θ′, Z)|Z, θ) = l(θ′, Z), we have:

l(θ′, Z) = Q(θ′, θ)−R(θ′, θ) [15]

We search a modelθ′ which maximizesl(θ′, Z). The E.M. method is based on the
following theorem, which says that maximizingQ can not decrease the likelihood.

Theorem 1. If Q(θ′, θ) > Q(θ, θ) thenl(θ′, Z) > l(θ, Z) (Dempsteret al.,1977)

Algorithm 1 depicts the EM algorithm. The likelihood of the final modelθc is a
local maxima. (Dempsteret al., 1977) recommends to repeat the experience and to
select the modelθc which maximizes the likelihood.
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Asymmetrical Semi-Supervised Learning 681

Algorithm 1 EM
Require: Z

1) Choose an initial model̂θ0.

2) ComputeQ(θ̂i, θ̂i) for the currenti (expectation phase).

3) Find θ̂i+1 such thatQ(θ̂i+1, θ̂i) > Q(θ̂i, θ̂i) (maximization phase).

4) Iterate to step 2 until convergence.

Ensure: a modelθc

Algorithm 2 EM + NB semi-supervised
Require: Slab, Sunl

1) Letθ̂0 be the model learned on labeled data

2) ∀x′ ∈ Sunl computeP (y′ = j|x′, θ̂n)

3) Computêθn+1 using formulas [16]

4) Goto step 2 until convergence

Ensure: θ̂f

2.3.2. EM method and the Naive Bayes classifier

EM has been used in (McCallumet al.,1999) to compute Naive Bayes models in
a semi-supervised framework. GivenSlab andSunl, and a modelθn at stepn, the
parametersα andλikj of the next modelθn+1 are computed as follows:

α =

n1 +
l′
∑

s=1
P̂ (y′

s = 1|x′
s, θ

n)

l + l′
,

λikj =

nk
ij +

l′
∑

s=1
P̂ (y′

s = j|x′i
s = k, θn)

∑

r
[nr

ij +
l′
∑

s=1
P̂ (y′

s = j|x′i
s = r, θn)]

[16]

WhereP̂ (A|θn) is the estimated probability of A within the modelθn.
Algorithm 2 summarizes the algorithm.

Results for text classification tasks show a notable improvement of the perfor-
mances when unlabeled data are added to the labeled data-set.
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682 RSTI - RIA — 20/2006. New Methods in Machine Learning

2.4. Identifiability of Naive Bayes model parameters with distribution P(x)

In (Geigeret al.,2001), it was shown that under Naive Bayes hypothesis, param-
eters of the model are identifiable from distributionP (x) on X when the number of
attributes is at least equal to three up to a permutation of the classes (see paper for
further details).

In order to compare our work to theirs, we shortly recall in this section the formulas
established in (Geigeret al., 2001) whenY = {0, 1} and attributes are binary to
compute Naive Bayes models parameters with distributionP (x).

Let:

zij...r = P (xi = 1, xj = 1, ..., xr = 1),

pi = P (xi = 1|y = 1),

qi = P (xi = 1|y = 0),

α = P (y = 1). [17]

Therefore:

zij...r = αpipj ....pr + (1− α)qiqj ...qr [18]

Let s, x1, ..., xm, u1, ..., um be the new coordinates after the following transfor-
mation:

α = (s + 1)/2, pi = xi + (1 − s)ui, qi = xi − (1 + s)ui [19]

A second transformation on coordinatesz is recursively defined as follows:

zij ← zij − zizj ,

zijr ← zijr − zijzr − zirzj − zjrzi − zizjzr

and so forth... [20]

Then,x, u, s can be computed as follows:

xi = zi,

u1 = ±
√

z12z13z23 + (z123)2/4/z23,

s = −z123/(2u1z23),

ui = z1i/(p2(s)u1) for i > 1 with p2(s) = 1− s2. [21]

C
et

 a
rt

ic
le

 d
es

 E
di

tio
ns

 L
av

oi
si

er
 a

 e
te

 te
le

ch
ar

ge
 s

ur
 r

ia
.r

ev
ue

so
nl

in
e.

co
m

 le
 2

0-
10

-2
01

7 
pa

r 
C

hr
is

to
ph

e 
M

ag
na

n 
(U

C
I)

  s
ui

te
 a

 s
on

 a
ch

at
 n

.7
65

9



cm
ag
na
n@
ic
s.
uc
i.
ed
u

Asymmetrical Semi-Supervised Learning 683

No application is proposed in the paper. In Section 3.4, we propose an algorithm
based on these formulas to compute Naive Bayes models from unlabeled data.

3. Identifiability of Naive Bayes models for semi-supervised learning variants

Several authors (Deniset al.,1999, Deniset al.,2003, Liuet al.,2003, Liuet al.,
2005) studied the asymmetrical semi-supervised learning,where the available labeled
examples are all positive and drawn according toP (x|y = 1). Naive Bayes classifiers
have also been used in this context of learning (Deniset al.,2003). Note that in (Denis
et al.,1999, Deniset al.,2003, Liuet al.,2003), authors consider that the parameter
α = P (y = 1) is known, which is not true in all situations. We show below that
distributions which assume Naive Bayes hypotheses are identifiable from distributions
P (x) andP (x|y = 1) without additional information.

In Section 3.1 we present general results about asymmetrical learning and show
that without assumption on the distributions, asymmetrical semi-supervised learning
is not a well-posed problem. Section 3.2 presents a theoretical study on the identifia-
bility of Naive Bayes models in asymmetrical semi-supervised context. We provide a
formula that shows that the model parameters are identifiable as soon as the number
of attributes is at least equal to 2. This formula provides a consistent estimator for
P (y = 1). Section 3.3 gives an adaptation of Algorithm 2 to positive and unlabeled
examples. Lastly, in Section 3.4, we propose an algorithm tolearn from unlabeled
data using formulas given Section 2.4, provided in (Geigeret al.,2001).

3.1. General case

Statistical learning suppose the existence of distributionsP (x) on X andP (y|x)
on Y for all x ∈ X . When Y = {0, 1}, these distributions are determined by
the knowledge ofP (x), P (x|y = 1) and P (y = 1). IndeedP (y = 1|x) =
P (x|y=1)·P (y=1)

P (x) andP (y = 0|x) = 1 − P (y = 1|x). Positive and unlabeled datasets
can be used to estimateP (x) andP (x|y = 1) on X . But generally, the parameter
P (y = 1) cannot be inferred from positive and unlabeled data.

Property 1. Without further information,P (y = 1) is not determined by distributions
P (x) andP (x|y = 1).

Proof. Let r = min{ P (x)
P (x|y=1) | x ∈ X andP (x|y = 1) 6= 0}. For all λ ∈ ]0, r],

there existsP ′ defined onX × Y by:

– P ′(x, y) = λ · P (x|y = 1) if P (x) 6= 0 andy = 1

– P ′(x, y) = P (x)− λ · P (x|y = 1) if P (x) 6= 0 andy = 0

– P ′(x, y) = 0 otherwise.
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684 RSTI - RIA — 20/2006. New Methods in Machine Learning

With this definition,P ′ is a generative distribution:

– P ′(y = 1) = λ

– P ′(x|y = 1) = P ′(x,y=1)
λ = P (x|y = 1)

– P ′(x|y = 0) = P (x)−λ·P ′(x|y=1)
1−λ

– P ′(x) = λ · P ′(x|y = 1) + (1− λ) · P ′(x|y = 0) = P (x)

Let λ1 ∈]0, r] andλ2 ∈]0, r] such thatλ1 6= λ2. LetP ′
1 andP ′

2 be the distributions
associated as defined previously. Then,P ′

1(x) = P ′
2(x) ∀x ∈ X , P ′

1(x|y = 1) =
P ′

2(x|y = 1) ∀x ∈ X , butP ′
1(y = 1) 6= P ′

2(y = 1), soP (y = 1) is not determined.

Remark: When it is known that the distributions satisfy complementary prop-
erties,P (x) andP (x|y = 1) may determineP (y = 1). For instance, deterministic
models,i.e. P (y = 1|x) = 1 or P (y = 1|x) = 0 for all x, are such distributions. In
this case:

P (y = 1) =
∑

x∈X

P (x)P (y = 1|x) =
∑

P (x|y=1) 6=0

P (x). [22]

3.2. Identification of Naive Bayes model parameters with distributionsP (x) and
P (x|y = 1)

In this section, we show that for distributions which follows the Naive Bayes hy-
pothesis,P (x) andP (x|y = 1) determineP (y = 1) as soon as the number of at-
tributes is at least 2. Moreover, we define a consistent estimator for this parameter.

Theorem 2. LetP a probability distribution on a discrete feature spaceX such thatP
follows the Naive Bayes assumption. ThenP (x) andP (x|y = 1) determineP (y = 1)
provided there exist at least two attributesxi andxj such thatP (xi|y = 1) 6= P (xi)
andP (xj |y = 1) 6= P (xj).

Proof. First, let us consider extremal values forP (y = 1):

– remark thatP (y = 1) 6= 0 since we suppose the existence of positive data.

– if P (y = 1) = 1, thenP (x) = P (x|y = 1) which contradicts the hypothesis.

Consider now that0 < P (y = 1) < 1 and note that :

P (xi|y = 1) 6= P (xi)⇔ P (xi|y = 1) 6= P (xi|y = 0).
Let:

– pik = P (xi = k|y = 1)

– qik = P (xi = k|y = 0).

– αik = P (xi = k)
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Asymmetrical Semi-Supervised Learning 685

– αjl = P (xj = l)

– αik,jl = P (xi = k ∩ xj = l)

For each attribute pair(i, j) (i 6= j), and for each pair of attributes valuesk, l
(k ∈ X i, l ∈ Xj), the following system holds:







αik = pik.P (y = 1) + qik.(1− P (y = 1))
αjl = pjl.P (y = 1) + qjl.(1− P (y = 1))
αik,jl = pik.pjl.P (y = 1) + qik.qjl.(1− P (y = 1))

Let (i, j) and(k, l) be a pair of attributes and a pair of values such aspik 6= qik

andpjl 6= qjl, from the two first equations, we can write:

qik =
αik − pik.P (y = 1)

1− P (y = 1)
and qjl =

αjl − pjl.P (y = 1)

1− P (y = 1)
[23]

By replacingqik andqjl in the third equation, we obtain, after simplification:

P (y = 1)(pikpjl − αikpjl − αjlpik + αik,jl) = αik,jl − αikαjl [24]

In order to obtain an analytical expression forP (y = 1), it is necessary to show
thatpikpjl−αikpjl−αjlpik +αik,jl is different from0. By replacingαik, αjl, αik,jl

with their definitions, we obtain:

pikpjl − αikpjl − αjlpik + αik,jl

= (1− P (y = 1)).(pik − qik).(pjl − qjl) [25]

which is not null under theorem assumptions. Therefore:

P (y = 1) =
αik,jl − αikαjl

pikpjl − αikpjl − αjlpik + αik,jl
[26]

P (y = 1) is thus determined byP (x) andP (x|y = 1).

This formula provides a natural estimator forP (y = 1). Let α̂ik,jl,
α̂ik, α̂jl, p̂ik, p̂jl be estimates ofαik,jl , αik, αjl, pik, pjl respectively, we consider:

P̂ (y = 1) =

∑

i,j,k,l

α̂ik,jl − α̂ikα̂jl

∑

i,j,k,l

p̂ikp̂jl − α̂ikp̂jl − α̂jlp̂ik + α̂ik,jl
[27]
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686 RSTI - RIA — 20/2006. New Methods in Machine Learning

Algorithm 3 NB asymmetrical semi-supervised
Require: Spos, Sunl

1) Compute estimatorŝαik,jl, α̂ik, α̂jl, p̂ik, p̂jl of αik,jl , αik, αjl, pik, pjl fromSpos

andSunl, 1 ≤ i, j ≤ m, k ∈ Dom(xi), l ∈ Dom(xj)

2) ComputeP̂ (y = 1) using [27]

3) Computêqik, q̂jl using [23]

Ensure: a modelθ̂

Other estimators could be provided by formula [26].

In practice, the average of thêP (y = 1) estimated with all the pairs of attributes
(xi, xj) such thatp̂ik 6= q̂ik and p̂jl 6= q̂jl may not provide accurate estimates of
P (y = 1) sincep̂ikp̂jl − α̂ikp̂jl − α̂jlp̂ik + α̂ik,jl can be very close to zero when
the sizes of the datasets are small. We do not have studied thequestion whether it
is possible to have better estimators but this is an important question that we plan to
address in future work.

We deduce from this study Algorithm 3.

In (Geigeret al.,2001), it was shown that under Naive Bayes hypothesis, param-
eters of the model are identifiable from distributionP (x) on X when the number
of attributes is at least equal to three up to a permutation ofthe classes (see Section
3.4). Results obtained on artificial data (Section 4) show that estimator [27] converges
really faster than the one computed from unlabeled data only(c.f. Section 3.4).

3.3. Estimate Naive Bayes models parameters with the criteria ofmaximum
likelihood

Previous section presents an algorithm to compute the parameters of Naive Bayes
models analytically. We were also interested to determine this parameters with the
criteria of maximum likelihood. The likelihoodL(θ′, Spos, Sunl) of Spos andSunl

for the modelθ′ can be written as follows:

L(θ′, Spos, Sunl) = βlL(θ, Spos)(1− β)l′L(θ, Sunl) [28]

With the same notation as in Section 2.2, and withβ representing now the probability
to draw a positive labeled example, we obtain:
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Asymmetrical Semi-Supervised Learning 687

Algorithm 4 EM+NB asym

Require: S = {Spos, Sunl}

1) EstimateP̂ (xi = k|y = 1) andP̂ (xi = k) with Spos etSunl.

2) ComputeP̂ (y = 1) using formula 27

3) Compute an initial modelθ0 from the estimateŝP (xi = k|y = 1), P̂ (xi = k)
andP̂ (y = 1).

4) ∀x′ ∈ Sunl, computeP (y = j|x′, θk), j ∈ {0, 1}
5) Compute a new modelθk+1 (see Section 2.3.2 for details)

6) Iterate to step 4 until stabilization

Ensure: θ̂S
ML

L(θ′
, Spos, Sunl)

= β
l
α

l

l
Y

r=1

„

Y

1≤i≤m

k/xi
r=k

λik1

«

(1 − β)l′
l′

Y

r=1

„

α
Y

1≤i≤m

k/xi
r=k

λik1 + (1 − α)
Y

1≤i≤m

k/xi
r=k

λik0

«

[29]

As in the classical semi-supervised case, the values of the parameters that maxi-
mize the likelihood cannot be computed analytically, so methods such as EM must be
used. We present now an iterative algorithm (Algorithm 4), adapted from Algorithm 2
(McCallum et al., 1999), which estimates parameterP (y = 1) by maximizing the
likelihood using E.M. and using estimator [27].

Experiments on artificial data show that if the size ofSpos is small, computing the
model parameters by using the criterion of maximum likelihood improved classifica-
tion performances and accuracy of the estimates.

3.4. Algorithm to compute Naive Bayes models from unlabeled data

We use formulas provided by (Geigeret al., 2001) (cf Section 2.4) to compute
the parameters of Naive Bayes models from unlabeled data. Note that thezij...r (cf
Section 2.4) can be estimated from unlabeled data. Note alsothat two models can be
computed according to the sign ofu1. We deduce from these formulas Algorithm 5.

Experimental results on artificial data (Section 4) show that huge samples are nec-
essary to provide accurate estimates of the target Naive Bayes models. When positive
examples are available, they can be used to identify classesand to provide better esti-
mates.
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Algorithm 5 NB unl
Require: z

1) Estimateu+
k =

P

1≤i,j≤m
i6=j 6=k

√
zkizkjzij+(zkij)2/4

P

1≤i,j≤m,i6=j 6=k

zij
∀k ∈ {1, .., m}, u−

k = −u+
k

2) Estimates+ = −
P

1≤i,j,k≤m,i6=j 6=k

zijk

P

1≤i,j,k≤m,i6=j 6=k

2uizjk
ands− = −s+

3) Compute modelθ+ from u+
1 andu+

i or u−
i (i > 1) according to the sign ofz1i

i.e. such thatsign(ui) = sign(z1i/(p2(s)u
+
1 ))

4) Compute modelθ− from u−
1 andu+

i or u−
i (i > 1) according to the sign ofz1i

i.e. such thatsign(ui) = sign(z1i/(p2(s)u
−
1 ))

Ensure: two modelsθ+ andθ−.

4. Experimental results on artificial data

In order to compare the algorithms presented in this paper, we lead an experimental
study on artificial data. Section 4.1 presents the experimental protocol. Next sections
present the results that have been obtained. They make it possible to compare the
accuracy of the estimates (Section 4.2) and the classification performances when the
size ofSpos (Slab for algorithm 1) andSunl grows (Section 4.3).

4.1. Experimental protocol

Ten target modelsθc = {P (y = 1), P (x|y = 1), P (x|y = 0)} are randomly
drawn. DistributionsP (x|y = 1) andP (x|y = 0) being product distributions (which
satisfy the Naive Bayes assumption) over{0, 1}n (n ∈ {20, 50}) drawn from a dis-
crete uniform distribution. The learning datasets are generated with modelsθc. For
eachn ∈ {100, 300, 500} and for each modelθc, 20 independent datasetsSlab (resp.
Sunl) of n labeled (resp.10n unlabeled) examples are drawn. The results (Table 1 and
2) are averages computed on 200 datasets (20 datasets for each model). Test setsStest

contain 10000 examples generated fromθc. Positive examples setsSpos are extracted
from Slab, so|Spos| u P (y = 1) ∗ |Slab|.

4.2. Parameters estimate accuracy

We first compare the accuracy ofP (y = 1) estimates provided by algorithms 2, 3,
4 and 5. Table 1 shows the mean square error ofP (y = 1) estimates obtained by the
four algorithms.
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Asymmetrical Semi-Supervised Learning 689

We point out that algorithm 2 learns fromSlab andSunl, algorithms 3 and 4 from
Spos and Sunl and algorithm 5 withSunl. The first line indicates the size of the
samples, the second one the number of binary attributes and others the square root of
the mean square error ofP (y = 1) estimates for the four algorithms.

|Slab|, |Sunl| 100, 1000 300, 3000 500, 5000

Number of attributes 20 50 20 50 20 50
EM+NB semi-sup. 0.014 0.010 0.008 0.006 0.006 0.005
(Algorithm 2) (0.003) (0.002) (0.002) (0.001) (0.002) (0.000)
NB asy. semi-sup. 0.047 0.022 0.023 0.012 0.012 0.007
(Algorithm 3) (0.013) (0.009) (0.006) (0.004) (0.004) (0.003)
EM+NB asym 0.014 0.010 0.008 0.006 0.006 0.005
(Algorithm 4) (0.003) (0.002) (0.002) (0.001) (0.002) (0.000)
NB unl 0.127 0.080 0.088 0.048 0.069 0.032
(Algorithm 5) (0.081) (0.053) (0.081) (0.038) (0.069) (0.025)

Table 1. Square root of the mean square error ofP (y = 1) estimates obtained by the
four algorithms. Best results are in boldface. Standard deviations are indicated between
brackets

Algorithms 2, 3 and 4 provides the better results according to stability of the esti-
mators. We have carried out other experiments where EM is runon randomly drawn
initial models: many runs are necessary to obtain a accurateestimate ofP (y = 1)
while using the model inferred by Algorithm 3 as the initial model makes it possible
to run EM only once.

Worse results are obtained by algorithm 5 (NB unl). This estimator converges
much more slowly than others. It requires too much examples to provide good esti-
mates in practice.

We can also observe that the two algorithms which use E.M. method tends to have
the same results.

4.3. Classification performances

We now present the results obtained for classification tasks. The experimental
protocol is described in Section 4.1. We consider the criterion of prediction error rate
(P̂ (f(x) 6= y)). Results are reported in Table 2. First line indicates the number of
binary attributes. The second one gives the averaged prediction error rate of the target
modelsθc onStest and the standard deviation of it for the 200 experiences.

We can note that results obtained by algorithms learning from positive and unla-
beled data tend to be similar to results obtained with labeled and unlabeled data. It
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690 RSTI - RIA — 20/2006. New Methods in Machine Learning

shows that the loss of negative examples do not decrease performances. This is very
interesting to know that it is not penalizing not to have labelled examples for one on
the two classes. For some classifications problems, data of one class are most difficult
to obtain than data of the other class.

Note that standard deviations decreases when size of learning datasets increases.
They are very large for small sizes of the data-sets, but smaller when these sizes grow.
This result is not really surprising after having observe the parameters estimate accu-
racy in Section 4.2.

The less accurate algorithm is the algorithm 5, which learnswith only unlabeled
examples. We can explain this result by the high mean square error obtained by this
estimator.

Nb of binary attributesxi 20 50

θc performances 0.049 0.001
(0.022) (0.002)

Sets size Algorithm Datasets Performances

Algorithm 2 Slab, Sunl 0.051 0.002
|Slab| = 100 EM+NB semi-sup (0.022) (0.002)

Algorithm 3 Spos, Sunl 0.106 0.015
|Sunl| = 1000 NB asy. semi-sup (0.036) (0.021)

Algorithm 4 Spos, Sunl 0.051 0.002
EM+NB asym (0.022) (0.002)
Algorithm 5 Sunl 0.225 0.113

NB unl (0.082) (0.087)

Algorithm 2 Slab, Sunl 0.049 0.001
|Slab| = 300 EM+NB semi-sup (0.022) (0.002)

Algorithm 3 Spos, Sunl 0.068 0.004
|Sunl| = 3000 NB asy. semi-sup (0.024) (0.005)

Algorithm 4 Spos, Sunl 0.050 0.001
EM+NB asym (0.022) (0.002)
Algorithm 5 Sunl 0.181 0.108

NB unl (0.086) (0.078)

Algorithm 2 Slab, Sunl 0.049 0.001
|Slab| = 500 EM+NB semi-sup (0.022) (0.002)

Algorithm 3 Spos, Sunl 0.057 0.002
|Sunl| = 5000 NB asy. semi-sup (0.022) (0.003)

Algorithm 4 Spos, Sunl 0.049 0.001
EM+NB asym (0.022) (0.002)
Algorithm 5 Sunl 0.164 0.106

NB unl (0.091) (0.075)

Table 2. Performances of the algorithms on artificial data
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Asymmetrical Semi-Supervised Learning 691

5. Prediction of the disulfide connectivity into proteins

This section presents experiments of the Algorithm 4 on biological data. The bio-
logical problem is to predict thedisulfide bridgeswithin a protein.

A protein may be represented by its primary structure – a sequence of amino acids–
from which a tridimensional structure is gathered; disulfide bridges are involved in the
3D conformation of a protein, as covalent bonds between two cysteines (amino acid
C). As a consequence, predicting such bridges from the primary sequences would be
a first step towards the prediction of the tridimensional structure of proteins.

One part of the information necessary (but not sufficient) for predicting such
bridges is located around each cysteine. In our approach forpredicting disulfide
bridges, we thus suppose that the amino acids located aroundcysteines contribute
to establish anaffinity (also calledpropensity) between those two cysteines.

Determining whether two fragments of a protein have affinityone for the other can
be represented as a problem of supervised classification, where the pairs of fragments
around two bonded cysteines are positive examples, and pairs of fragments around
two unbonded cysteines are negative examples. Instead, we make the hypothesis that
two bonded fragments are positive examples, but that two unbonded fragments could
actually be bonded in another context: the local information around unbonded cys-
teines do not give enough information about the concept of affinity. We are thus in a
case of asymmetric semi-supervised learning: a pair of cysteines that are not bonded
is a non determined (unlabeled) example rather than a negative example. Indeed, a
cysteine cannot be involved in more than one bridge whereas it may have affinity for
more than one other cysteine.

5.1. Data

The data are extracted from theProtein Data Bank (PDB)by Christophe
Geourjon (IBCP, Lyon, France)for the working group ACI GENOTOD
(http://www.loria.fr/ guermeur/GdT/): 227 proteins are available, annotated with re-
gards to known disulfide bridges within each protein. Note that only oxidized cys-
teines can be involved in a bridge, and either all cysteines of a protein are bonded, or
none of them form a bridge. Figure 1 describes the data according to the number of
amino acids in proteins, and Figure 2 describes the proteinsaccording to the number
of bridges.

5.2. Experimental protocol

Data representation
We try to estimate local affinities into proteins. In the caseof disulfide bridges, these
interactions arise between amino acids located close to cysteines. We thus extract
from the protein sequence a set of fragments centered on cysteines. Let us denote by
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Figure 1. Histogram of proteins sizes

Figure 2. Distribution of the proteins grouped according to the number of disulfide
bridges

windowssuch fragments, and let us denotex−n, ..., x−1, x0, x1, ..., xn a window of
radiusn (x0 is thus a cysteine). We work with an alphabet of size 231 (number of
ordered couples on an alphabet of size 21: the 20 amino acids and a letter representing
unknown amino acids or missing amino acids when the cysteineis too much close to
one end of sequence). We set up three codings:

– simple coding:{(xi, x
′
i)}, i ∈ {−n, ..., n}, i 6= 0, xi ∈ f, x′

i ∈ f ′

– double coding:{(xi, x
′
i)}∪{(xi, x

′
−i)}, i ∈ {−n, ..., n}, i 6= 0, xi ∈ f, x′

i ∈ f ′

– crossed coding:{(xi, x
′
j)}, i, j ∈ {−n, ..., n}, xi ∈ f, x′

i ∈ f ′

The first coding represents the pairs of aligned amino acids between two windows of
the same size. The double coding takes into account the fact that we do not know the
directions of segments and considers the both possibilities. The last coding considers
all the pairs of amino acids that we can form with two segments.

Learning protocol
For a protein containingn bridges, we haven(2n − 1) pairs of windows potentially
in interaction. If a pair is bonded, we consider it as a positive example. Non bonded
pairs are considered as negative examples in the Naive Bayesapproach, while they
are considered as unlabeled examples in Algorithm 4.
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We split the set of annotated proteins according to the number of bridges: the
learning is independent from one set to another. We studied casesn =2,3,4, and 5 (for
n = 1, the case is trivial, forn > 5, not enough data is available for a significative
learning).

Test protocol
In order to test the quality of affinity estimation, we set up atest protocol which
accounts for the following information: for each pair of windows in a test protein, we
compute the probability that the two windows have a high affinity, the connectivity
that maximizes likelihood is considered. It comes down to computing the maximal
weight perfect coupling in a full graph. The vertices of thatgraph are the protein
windows, and an edge between two windows is the probability that these windows
have high affinity between them.

We use 10-fold cross-validations for each of the three previous encodings. We
compare results with random selection of the bridges. For a protein containingn
bridges, the expected number of correctly predicted bridges with a random selection
is n

2n−1 .

5.3. Experimental results

The best results were obtained with the crossed encoding: only these results are
reported here. They are actually an average of 100 experiments.

Nb of bridges/cysteines per protein 2/4 3/6 4/8 5/10
Nb and % of correctly predict 34 30 16 11,1
bridges with a random selection 33,33% 20% 14,3% 11,1%
Nb and % of correctly predict bridges 41 26,25 14,22 5,8
with Algorithm NB (supervised) 40,2% 17,5% 12,7% 5,8%
Nb and % of correctly predict bridges 60 50,1 18,26 13,2
with Algorithme 4 (asym. semi-sup.) 58,8% 33,4% 16,3% 13,2%

Table 3. Experimental results on biological data: the contributionof the algorithm 4
for predicting disulfide bridges is obvious

Other results are available in (Fariselliet al.,2001, Fariselliet al.,2002, Vulloet
al., 2004). The best results (Fariselliet al., 2002) are mostly better than ours (table
below), but they were obtained by much more sophisticated methods (recursive neural
networks), more data, and their methods integrated anothermajor information which
is the information about evolution (they encoded fragmentsaccording to profiles). The
differences between their context of experiments and ours,make difficult any accurate
comparison.
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Nb of bridges per protein 2 br. 3 br. 4 br. 5 br.
Nb of proteins 156 146 99 45
Correctly predicted bridges 73% 56% 37% 30%

Table 4. Results obtained in (Fariselliet al.,2002)

Our purpose was to determine whether an unbounded pair of cysteines should be
considered as negative example or as an unlabeled example. The results obtained
are sufficient to conclude that our biological hypothesis seems to be confirmed: it is
relevant to consider non bonded pairs of cysteines as unlabeled examples rather than
negative examples. This hypotheses must now be integrated in more sophisticated
methods such as RNN, SVMs, etc.

6. Conclusion

In this paper, we lead a study in the asymmetrical semi-supervised context, where
only positive and unlabeled examples are available. We showthat the asymmetrical
semi-supervised learning is a well-posed problem when attributes follow Naive Bayes
assumption. This result can be deduce from (Geigeret al.,2001). In this paper authors
show that Naive Bayes models are identifiable from unlabeledexamples only. This
result is stronger than our but we show that taking into account information provided
by positive examples increases significantly accuracy of estimates. We give analytical
methods to identify models at the limit which outperforms those gived in (Geigeret
al., 2001). We also propose iterative algorithm to compute models on the criteria of
maximum likelihood, inspired of the algorithm proposed in (McCallumet al.,1999)
for classical semi-supervised learning. Both methods provide similar results, which
signify that the loss of negative examples do not penalize the learning.

The application of this work for the prediction of disulfide connectivity supports
an original assumption for data representation. It seems tobe better to consider un-
bounded pairs of cysteines as unlabeled examples, which provide no information con-
cerning the class, rather than negative examples. We are currently working to apply
this method to other biological data (in particular Beta sheets) and to determine a pro-
tocol to decide whether there are local affinity in molecules. We also look for methods
such as SVM which are notably more effective than Naive Bayesclassifier and which
could be developed in this framework.
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